Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file added __pycache__/cleaning_functions.cpython-313.pyc
Binary file not shown.
94 changes: 94 additions & 0 deletions cleaning_functions.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,94 @@
import pandas as pd
import numpy as np


def clean_column_names(df):
df.columns = df.columns.str.lower().str.replace(" ", "_")
df = df.rename(columns={"st": "state"})
return df



def clean_invalid_values(df):

df["gender"] = (df["gender"].astype(str).str.strip().str.upper()
.replace({"MALE": "M", "FEMALE": "F", "FEMAL": "F"}))


df["state"] = df["state"].replace({
"Cali": "California",
"AZ": "Arizona",
"WA": "Washington"
})


df["education"] = df["education"].replace({"Bachelors": "Bachelor"})


df["vehicle_class"] = df["vehicle_class"].replace({
"Sports Car": "Luxury",
"Luxury Car": "Luxury",
"Luxury SUV": "Luxury"
})

return df


def clean_clv(df):
df["customer_lifetime_value"] = (
df["customer_lifetime_value"].astype(str)
.str.replace("%", "", regex=False)
.str.replace("+", "", regex=False)
.astype(float) / 100
)
df["customer_lifetime_value"] = df["customer_lifetime_value"].round(2)
return df


def clean_open_complaints(df):
col = df["number_of_open_complaints"]
if pd.api.types.is_numeric_dtype(col):
df["number_of_open_complaints"] = col.fillna(0).astype(int)
return df
col = col.astype(str)
splits = col.str.split("/", expand=True)
if splits.shape[1] > 1:
mid = splits.iloc[:, 1]
else:
mid = splits.iloc[:, 0]
df["number_of_open_complaints"] = (
pd.to_numeric(mid, errors="coerce")
.fillna(0)
.astype(int)
)
return df



def handle_nulls(df):
num_cols = df.select_dtypes(include=["number"]).columns
cat_cols = df.select_dtypes(include=["object"]).columns

for col in num_cols:
df[col] = df[col].fillna(df[col].median())

for col in cat_cols:
df[col] = df[col].fillna(df[col].mode()[0])

return df


def remove_duplicates(df):
df = df.drop_duplicates(keep="first")
df = df.reset_index(drop=True)
return df


def clean_data(df):
df = clean_column_names(df)
df = clean_invalid_values(df)
df = clean_clv(df)
df = clean_open_complaints(df)
df = handle_nulls(df)
df = remove_duplicates(df)
return df
Loading