π Build. Backtest. Deploy. Quantitative Trading Strategies at Scale
The fastest way to go from trading idea to production-ready trading bot
β If you like this project, please consider starring it! Your support helps us build better tools for the community.
Stop wasting time on boilerplate. The Investing Algorithm Framework handles all the heavy lifting:
β¨ From Idea to Production β Write your strategy once, deploy everywhere
π Accurate Backtesting β Event-driven and vectorized engines for realistic results
β‘ Lightning Fast β Optimized for speed and efficiency
π§ Extensible β Connect any exchange, broker, or data source
π Production Ready β Built for real money trading
Extend your trading bot with powerful plugins:
| Plugin | Description |
|---|---|
| π― PyIndicators | Technical analysis indicators for strategy development |
| πͺ Finterion Plugin | Monetize & share your strategies with the public on Finterion's marketplace |
| Feature | Description |
|---|---|
| π Python 3.10+ | Cross-platform support for Windows, macOS, and Linux |
| βοΈ Event-Driven Backtest | Accurate, realistic backtesting with event-driven architecture |
| β‘ Vectorized Backtest | Lightning-fast signal research and prototyping |
| π Advanced Metrics | CAGR, Sharpe ratio, max drawdown, win rate, and 50+ more metrics |
| π Backtest Reports | Generate detailed, comparison-ready reports |
| π― Statistical Testing | Permutation testing for strategy significance evaluation |
| π± Live Trading | Real-time execution across multiple exchanges (via CCXT) |
| πΌ Portfolio Management | Full position and trade management with persistence |
| π Market Data | OHLCV, tickers, custom data β Polars & Pandas native |
| π Data Integrations | PyIndicators, multiple data sources, custom providers |
| βοΈ Cloud Deployment | Azure Functions, AWS Lambda, and more |
| π Web API | REST API for bot interaction and monitoring |
| π§© Fully Extensible | Custom strategies, data providers, order executors |
| ποΈ Modular Design | Build with reusable, composable components |
Install the framework via PyPI:
pip install investing-algorithm-frameworkRun the following command to scaffold a new trading bot:
investing-algorithm-framework initFor an AWS Lambda-ready project:
investing-algorithm-framework init --type aws_lambdaThis creates:
- app.py β Your bot's entry point (keep as-is)
- strategy.py β Your trading strategy (customize this!)
π‘ Tip: You can also create
default_weborazure_functionprojects
The following example trading bot implements a simple moving average strategy. The strategy will use data from bitvavo exchange and will calculate the 20, 50 and 100 period exponential moving averages (EMA) and the 14 period relative strength index (RSI).
This example uses PyIndicators for technical analysis. This dependency is not part of the framework, but is used to perform technical analysis on the dataframes. You can install it using pip: pip install pyindicators.
from typing import Dict, Any
from datetime import datetime, timezone
import pandas as pd
from pyindicators import ema, rsi, crossover, crossunder
from investing_algorithm_framework import TradingStrategy, DataSource, \
TimeUnit, DataType, PositionSize, create_app, RESOURCE_DIRECTORY, \
BacktestDateRange, BacktestReport, TakeProfitRule, StopLossRule
class RSIEMACrossoverStrategy(TradingStrategy):
time_unit = TimeUnit.HOUR
interval = 2
symbols = ["BTC"]
position_sizes = [
PositionSize(
symbol="BTC", percentage_of_portfolio=20.0
),
PositionSize(
symbol="ETH", percentage_of_portfolio=20.0
)
]
take_profits = [
TakeProfitRule(
symbol="BTC",
percentage_threshold=10,
trailing=True,
sell_percentage=100
),
TakeProfitRule(
symbol="ETH",
percentage_threshold=10,
trailing=True,
sell_percentage=100
)
]
stop_losses = [
StopLossRule(
symbol="BTC",
percentage_threshold=5,
trailing=False,
sell_percentage=100
),
StopLossRule(
symbol="ETH",
percentage_threshold=5,
trailing=False,
sell_percentage=100
)
]
def __init__(
self,
time_unit: TimeUnit,
interval: int,
market: str,
rsi_time_frame: str,
rsi_period: int,
rsi_overbought_threshold,
rsi_oversold_threshold,
ema_time_frame,
ema_short_period,
ema_long_period,
ema_cross_lookback_window: int = 10
):
self.rsi_time_frame = rsi_time_frame
self.rsi_period = rsi_period
self.rsi_result_column = f"rsi_{self.rsi_period}"
self.rsi_overbought_threshold = rsi_overbought_threshold
self.rsi_oversold_threshold = rsi_oversold_threshold
self.ema_time_frame = ema_time_frame
self.ema_short_result_column = f"ema_{ema_short_period}"
self.ema_long_result_column = f"ema_{ema_long_period}"
self.ema_crossunder_result_column = "ema_crossunder"
self.ema_crossover_result_column = "ema_crossover"
self.ema_short_period = ema_short_period
self.ema_long_period = ema_long_period
self.ema_cross_lookback_window = ema_cross_lookback_window
data_sources = []
for symbol in self.symbols:
full_symbol = f"{symbol}/EUR"
data_sources.append(
DataSource(
identifier=f"{symbol}_rsi_data",
data_type=DataType.OHLCV,
time_frame=self.rsi_time_frame,
market=market,
symbol=full_symbol,
pandas=True,
window_size=800
)
)
data_sources.append(
DataSource(
identifier=f"{symbol}_ema_data",
data_type=DataType.OHLCV,
time_frame=self.ema_time_frame,
market=market,
symbol=full_symbol,
pandas=True,
window_size=800
)
)
super().__init__(
data_sources=data_sources, time_unit=time_unit, interval=interval
)
def _prepare_indicators(
self,
rsi_data,
ema_data
):
"""
Helper function to prepare the indicators
for the strategy. The indicators are calculated
using the pyindicators library: https://github.com/coding-kitties/PyIndicators
"""
ema_data = ema(
ema_data,
period=self.ema_short_period,
source_column="Close",
result_column=self.ema_short_result_column
)
ema_data = ema(
ema_data,
period=self.ema_long_period,
source_column="Close",
result_column=self.ema_long_result_column
)
# Detect crossover (short EMA crosses above long EMA)
ema_data = crossover(
ema_data,
first_column=self.ema_short_result_column,
second_column=self.ema_long_result_column,
result_column=self.ema_crossover_result_column
)
# Detect crossunder (short EMA crosses below long EMA)
ema_data = crossunder(
ema_data,
first_column=self.ema_short_result_column,
second_column=self.ema_long_result_column,
result_column=self.ema_crossunder_result_column
)
rsi_data = rsi(
rsi_data,
period=self.rsi_period,
source_column="Close",
result_column=self.rsi_result_column
)
return ema_data, rsi_data
def generate_buy_signals(self, data: Dict[str, Any]) -> Dict[str, pd.Series]:
"""
Generate buy signals based on the moving average crossover.
data (Dict[str, Any]): Dictionary containing all the data for
the strategy data sources.
Returns:
Dict[str, pd.Series]: A dictionary where keys are symbols and values
are pandas Series indicating buy signals (True/False).
"""
signals = {}
for symbol in self.symbols:
ema_data_identifier = f"{symbol}_ema_data"
rsi_data_identifier = f"{symbol}_rsi_data"
ema_data, rsi_data = self._prepare_indicators(
data[ema_data_identifier].copy(),
data[rsi_data_identifier].copy()
)
# crossover confirmed
ema_crossover_lookback = ema_data[
self.ema_crossover_result_column].rolling(
window=self.ema_cross_lookback_window
).max().astype(bool)
# use only RSI column
rsi_oversold = rsi_data[self.rsi_result_column] \
< self.rsi_oversold_threshold
buy_signal = rsi_oversold & ema_crossover_lookback
buy_signals = buy_signal.fillna(False).astype(bool)
signals[symbol] = buy_signals
return signals
def generate_sell_signals(self, data: Dict[str, Any]) -> Dict[str, pd.Series]:
"""
Generate sell signals based on the moving average crossover.
Args:
data (Dict[str, Any]): Dictionary containing all the data for
the strategy data sources.
Returns:
Dict[str, pd.Series]: A dictionary where keys are symbols and values
are pandas Series indicating sell signals (True/False).
"""
signals = {}
for symbol in self.symbols:
ema_data_identifier = f"{symbol}_ema_data"
rsi_data_identifier = f"{symbol}_rsi_data"
ema_data, rsi_data = self._prepare_indicators(
data[ema_data_identifier].copy(),
data[rsi_data_identifier].copy()
)
# Confirmed by crossover between short-term EMA and long-term EMA
# within a given lookback window
ema_crossunder_lookback = ema_data[
self.ema_crossunder_result_column].rolling(
window=self.ema_cross_lookback_window
).max().astype(bool)
# use only RSI column
rsi_overbought = rsi_data[self.rsi_result_column] \
>= self.rsi_overbought_threshold
# Combine both conditions
sell_signal = rsi_overbought & ema_crossunder_lookback
sell_signal = sell_signal.fillna(False).astype(bool)
signals[symbol] = sell_signal
return signals
if __name__ == "__main__":
app = create_app()
app.add_strategy(
RSIEMACrossoverStrategy(
time_unit=TimeUnit.HOUR,
interval=2,
market="bitvavo",
rsi_time_frame="2h",
rsi_period=14,
rsi_overbought_threshold=70,
rsi_oversold_threshold=30,
ema_time_frame="2h",
ema_short_period=12,
ema_long_period=26,
ema_cross_lookback_window=10
)
)
# Market credentials for coinbase for both the portfolio connection and data sources will
# be read from .env file, when not registering a market credential object in the app.
app.add_market(
market="bitvavo",
trading_symbol="EUR",
)
backtest_range = BacktestDateRange(
start_date=datetime(2023, 1, 1, tzinfo=timezone.utc),
end_date=datetime(2024, 6, 1, tzinfo=timezone.utc)
)
backtest = app.run_backtest(
backtest_date_range=backtest_range, initial_amount=1000
)
report = BacktestReport(backtest)
report.show(backtest_date_range=backtest_range, browser=True)You can find more examples here folder.
Comprehensive documentation is available at github pages.
Clone the repository and install dependencies using Poetry:
Make sure you have Poetry installed.
git clone https://github.com/coding-kitties/investing-algorithm-framework.git
cd investing-algorithm-framework
poetry install# Run all tests
python -m unittest discover -s tests
# Run specific test
python -m unittest tests.services.test_trade_service.TestTradeServiceπ¨ Use at Your Own Risk
If you use this framework for your investments, do not risk money which you are afraid to lose until you have a clear understanding of how the framework works.
BEFORE YOU START USING MONEY WITH THE FRAMEWORK:
- β Test your strategies thoroughly with backtesting
- β Review the source code of any plugins you use
- β Start with small amounts on paper trading first
- β Understand the risks involved
We assume no responsibility for your investment results. The authors and all affiliates disclaim any liability for losses.
The investing algorithm framework is a community-driven project. We welcome contributions at all levels:
- π Found a bug? Open an issue
- π‘ Have an idea? Share it with us
- π§ Want to code? Check the project board
Guidelines:
- Read the Contributing Guide
- Always create PRs against the
developbranch, notmain - Open an issue before starting major feature work
Comprehensive documentation is available at GitHub Pages
Join us and connect with other traders and developers:
- π¬ Discord Community β Real-time chat and support
- π Reddit Community β Share strategies and discuss
- π Documentation β Guides and API references
We want to thank all contributors to this project. A full list can be found in AUTHORS.md
If you discover a bug in the framework, please search our issue tracker first. If it hasn't been reported, please create a new issue.