-
-
Notifications
You must be signed in to change notification settings - Fork 239
Tableau Implementation for Tsit5 #2913
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
KeshavVenkatesh
wants to merge
2
commits into
SciML:master
Choose a base branch
from
KeshavVenkatesh:benchmarking-tableaus
base: master
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
+694
−0
Open
Changes from all commits
Commits
Show all changes
2 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,45 @@ | ||
| """ | ||
| Generic interpolation for Runge-Kutta methods. | ||
| Arguments: | ||
| - Θ: interpolation parameter (0 ≤ Θ ≤ 1) | ||
| - dt: time step | ||
| - y₀: initial value | ||
| - k: stage derivatives (vector of vectors, one per component) | ||
| - tableau: coefficient matrix where each row contains polynomial coefficients for a stage | ||
| Each row i contains [a₀, a₁, a₂, ...] for polynomial aᵢ₀ + aᵢ₁*Θ + aᵢ₂*Θ² + ... | ||
| - idxs: indices (optional, for partial interpolation) | ||
| - order: 0 for value, 1 for derivative | ||
| """ | ||
| function generic_interpolant(Θ, dt, y₀, k, tableau; idxs=nothing, order=0) | ||
| # Determine the number of stages based on the tableau size | ||
| num_stages = size(tableau, 1) | ||
| num_coeffs = size(tableau, 2) | ||
|
|
||
| # For each stage, evaluate the polynomial or its derivative | ||
| b = if order == 0 | ||
| # Use builtin evalpoly for polynomial evaluation: a₀ + a₁*Θ + a₂*Θ² + ... | ||
| [@evalpoly(Θ, tableau[i,:]...) for i in 1:num_stages] | ||
| else | ||
| # For derivative: d/dΘ [a₀ + a₁*Θ + a₂*Θ² + ...] = a₁ + 2*a₂*Θ + 3*a₃*Θ² + ... | ||
| [@evalpoly(Θ, [j * tableau[i, j+1] for j in 1:(num_coeffs-1)]...) for i in 1:num_stages] | ||
| end | ||
|
|
||
| # Compute the interpolation sum | ||
| if isnothing(idxs) | ||
| # Full vector | ||
| interp_sum = sum(k[i] * b[i] for i in 1:num_stages) | ||
| if order == 0 | ||
| return y₀ + dt * interp_sum | ||
| else | ||
| return interp_sum | ||
| end | ||
| else | ||
| # Indexed | ||
| interp_sum = sum(k[i][idxs] * b[i] for i in 1:num_stages) | ||
| if order == 0 | ||
| return y₀[idxs] + dt * interp_sum | ||
| else | ||
| return interp_sum | ||
| end | ||
| end | ||
| end | ||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,293 @@ | ||
| # ============================================================================ | ||
| # Tsit5 Interpolation Coefficients in Matrix Form | ||
| # ============================================================================ | ||
|
|
||
| """ | ||
| construct_tsit5_interp_matrix(T::Type = Float64) | ||
|
|
||
| Constructs the interpolation coefficient matrix for Tsit5 method. | ||
| This converts the polynomial coefficients from the original Tsit5 implementation | ||
| into a matrix format for generic interpolation. | ||
|
|
||
| The matrix B_interp has dimensions (7, 5) where: | ||
| - Row i contains coefficients for stage i's interpolation polynomial | ||
| - Column j contains coefficients for Θ^(j-1) term | ||
|
|
||
| Each polynomial bᵢ(Θ) is defined as: | ||
| bᵢ(Θ) = bᵢ₀ + bᵢ₁*Θ + bᵢ₂*Θ² + bᵢ₃*Θ³ + bᵢ₄*Θ⁴ | ||
|
|
||
| For Tsit5, the original formulation was: | ||
| b₁(Θ) = Θ * (r11 + r12*Θ + r13*Θ² + r14*Θ³) | ||
| = 0 + r11*Θ + r12*Θ² + r13*Θ³ + r14*Θ⁴ | ||
|
|
||
| b₂(Θ) = Θ² * (r22 + r23*Θ + r24*Θ²) | ||
| = 0 + 0*Θ + r22*Θ² + r23*Θ³ + r24*Θ⁴ | ||
|
|
||
| ... and so on for all 7 stages | ||
| = | ||
| """ | ||
| function construct_tsit5_interp_matrix(T::Type = Float64) | ||
| # Original Tsit5 interpolation coefficients | ||
| # From OrdinaryDiffEqTsit5/src/tsit_tableaus.jl | ||
|
|
||
| # Stage 1: b₁(Θ) = Θ * (r11 + r12*Θ + r13*Θ² + r14*Θ³) | ||
| r11 = convert(T, 1.0) | ||
| r12 = convert(T, -2.763706197274826) | ||
| r13 = convert(T, 2.9132554618219126) | ||
| r14 = convert(T, -1.0530884977290216) | ||
|
|
||
| # Stage 2: b₂(Θ) = Θ² * (r22 + r23*Θ + r24*Θ²) | ||
| r22 = convert(T, 0.13169999999999998) | ||
| r23 = convert(T, -0.2234) | ||
| r24 = convert(T, 0.1017) | ||
|
|
||
| # Stage 3: b₃(Θ) = Θ² * (r32 + r33*Θ + r34*Θ²) | ||
| r32 = convert(T, 3.9302962368947516) | ||
| r33 = convert(T, -5.941033872131505) | ||
| r34 = convert(T, 2.490627285651253) | ||
|
|
||
| # Stage 4: b₄(Θ) = Θ² * (r42 + r43*Θ + r44*Θ²) | ||
| r42 = convert(T, -12.411077166933676) | ||
| r43 = convert(T, 30.33818863028232) | ||
| r44 = convert(T, -16.548102889244902) | ||
|
|
||
| # Stage 5: b₅(Θ) = Θ² * (r52 + r53*Θ + r54*Θ²) | ||
| r52 = convert(T, 37.50931341651104) | ||
| r53 = convert(T, -88.1789048947664) | ||
| r54 = convert(T, 47.37952196281928) | ||
|
|
||
| # Stage 6: b₆(Θ) = Θ² * (r62 + r63*Θ + r64*Θ²) | ||
| r62 = convert(T, -27.896526289197286) | ||
| r63 = convert(T, 65.09189467479366) | ||
| r64 = convert(T, -34.87065786149661) | ||
|
|
||
| # Stage 7: b₇(Θ) = Θ² * (r72 + r73*Θ + r74*Θ²) | ||
| r72 = convert(T, 1.5) | ||
| r73 = convert(T, -4.0) | ||
| r74 = convert(T, 2.5) | ||
|
|
||
| # Construct the interpolation matrix | ||
| # B_interp[i, j] = coefficient of Θ^(j-1) in bᵢ(Θ) | ||
| B_interp = zeros(T, 7, 5) | ||
|
|
||
| # Stage 1: bᵢ(Θ) = 0 + r11*Θ + r12*Θ² + r13*Θ³ + r14*Θ⁴ | ||
| B_interp[1, :] = [0, r11, r12, r13, r14] | ||
|
|
||
| # Stages 2-7: bᵢ(Θ) = 0 + 0*Θ + ri2*Θ² + ri3*Θ³ + ri4*Θ⁴ | ||
| B_interp[2, :] = [0, 0, r22, r23, r24] | ||
| B_interp[3, :] = [0, 0, r32, r33, r34] | ||
| B_interp[4, :] = [0, 0, r42, r43, r44] | ||
| B_interp[5, :] = [0, 0, r52, r53, r54] | ||
| B_interp[6, :] = [0, 0, r62, r63, r64] | ||
| B_interp[7, :] = [0, 0, r72, r73, r74] | ||
|
|
||
| return B_interp | ||
| end | ||
|
|
||
| """ | ||
| construct_tsit5_interp_matrix_highprecision(T::Type) | ||
|
|
||
| High-precision version for BigFloat and other arbitrary-precision types. | ||
| We have not tested this | ||
| """ | ||
| function construct_tsit5_interp_matrix_highprecision(T::Type) | ||
| # Stage 1 | ||
| r11 = convert(T, big"0.999999999999999974283372471559910888475488471328") | ||
| r12 = convert(T, big"-2.763706197274825911336735930481400260916070804192") | ||
| r13 = convert(T, big"2.91325546182191274375068099306808") | ||
| r14 = convert(T, -1.0530884977290216) | ||
|
|
||
| # Stage 2 | ||
| r22 = convert(T, big"0.13169999999999999727") | ||
| r23 = convert(T, big"-0.22339999999999999818") | ||
| r24 = convert(T, 0.1017) | ||
|
|
||
| # Stage 3 | ||
| r32 = convert(T, big"3.93029623689475152850687446709813398") | ||
| r33 = convert(T, big"-5.94103387213150473470249202589458001") | ||
| r34 = convert(T, big"2.490627285651252793") | ||
|
|
||
| # Stage 4 | ||
| r42 = convert(T, big"-12.411077166933676983734381540685453484102414134010752") | ||
| r43 = convert(T, big"30.3381886302823215981729903691836576") | ||
| r44 = convert(T, big"-16.54810288924490272") | ||
|
|
||
| # Stage 5 | ||
| r52 = convert(T, big"37.50931341651103919496903965334519631242339792120440212") | ||
| r53 = convert(T, big"-88.1789048947664011014276693541209817") | ||
| r54 = convert(T, big"47.37952196281928122") | ||
|
|
||
| # Stage 6 | ||
| r62 = convert(T, big"-27.896526289197287805948263144598643896") | ||
| r63 = convert(T, big"65.09189467479367152629021928716553658") | ||
| r64 = convert(T, big"-34.87065786149660974") | ||
|
|
||
| # Stage 7 | ||
| r72 = convert(T, 1.5) | ||
| r73 = convert(T, -4.0) | ||
| r74 = convert(T, 2.5) | ||
|
|
||
| # Construct matrix | ||
| B_interp = zeros(T, 7, 5) | ||
| B_interp[1, :] = [0, r11, r12, r13, r14] | ||
| B_interp[2, :] = [0, 0, r22, r23, r24] | ||
| B_interp[3, :] = [0, 0, r32, r33, r34] | ||
| B_interp[4, :] = [0, 0, r42, r43, r44] | ||
| B_interp[5, :] = [0, 0, r52, r53, r54] | ||
| B_interp[6, :] = [0, 0, r62, r63, r64] | ||
| B_interp[7, :] = [0, 0, r72, r73, r74] | ||
|
|
||
| return B_interp | ||
| end | ||
|
|
||
| """ | ||
| construct_tsit5_interp_matrix_auto(T::Type) | ||
|
|
||
| Automatically selects appropriate precision based on type. | ||
| """ | ||
| function construct_tsit5_interp_matrix_auto(T::Type) | ||
| if T <: Union{Float32, Float64} | ||
| return construct_tsit5_interp_matrix(T) | ||
| else | ||
| return construct_tsit5_interp_matrix_highprecision(T) | ||
| end | ||
| end | ||
|
|
||
| # Convert Tsit5 tableau to ExplicitRK format | ||
|
|
||
| """ | ||
| constructTsit5ExplicitRK(T::Type = Float64) | ||
|
|
||
| Constructs the Tsitouras 5/4 method in ExplicitRK tableau format. | ||
| This allows using Tsit5 with the generic ExplicitRK solver. | ||
|
|
||
| Tsit5 is a 7-stage, 5th-order method with 4th-order embedded error estimate. | ||
| """ | ||
| function constructTsit5ExplicitRK(T::Type = Float64) | ||
| # Build the A matrix (Butcher tableau coefficients) | ||
| # 7 stages, lower triangular (explicit method) | ||
| A=[0 0 0 0 0 0 0 | ||
| 14//87 0 0 0 0 0 0 | ||
| -1//117 50//149 0 0 0 0 0 | ||
| 310//107 -407//64 301//69 0 0 0 0 | ||
| 474//89 -2479//211 817//109 -5//54 0 0 0 | ||
| 381//65 -491//38 563//69 -19//265 -3//106 0 0 | ||
| 8//83 1//100 107//223 131//95 -329//100 179//77 0] | ||
| # A = Float8.(A) | ||
|
|
||
| # Time nodes (c vector) | ||
| c = [0; 161//1000; 327//1000; 9//10; | ||
| big".9800255409045096857298102862870245954942137979563024768854764293221195950761080302604"; | ||
| 1; 1] | ||
|
|
||
|
|
||
| # Solution weights (b vector) - 5th order | ||
| α = [ | ||
| big".9468075576583945807478876255758922856117527357724631226139574065785592789071067303271e-1", | ||
| big".9183565540343253096776363936645313759813746240984095238905939532922955247253608687270e-2", | ||
| big".4877705284247615707855642599631228241516691959761363774365216240304071651579571959813", | ||
| big"1.234297566930478985655109673884237654035539930748192848315425833500484878378061439761", | ||
| big"-2.707712349983525454881109975059321670689605166938197378763992255714444407154902012702", | ||
| big"1.866628418170587035753719399566211498666255505244122593996591602841258328965767580089", | ||
| 1//66 # = 0.015151515151515152 | ||
| ] | ||
| # Error estimate weights (b̂ vector) - 4th order | ||
| # Note: In Tsit5, btilde = b - b̂, so b̂ = b - btilde | ||
| btilde = [ | ||
| big"-1.780011052225771443378550607539534775944678804333659557637450799792588061629796e-03", | ||
| big"-8.164344596567469032236360633546862401862537590159047610940604670770447527463931e-04", | ||
| big"7.880878010261996010314727672526304238628733777103128603258129604952959142646516e-03", | ||
| big"-1.44711007173262907537165147972635116720922712343167677619514233896760819649515e-01", | ||
| big"5.823571654525552250199376106520421794260781239567387797673045438803694038950012e-01", | ||
| big"-4.580821059291869466616365188325542974428047279788398179474684434732070620889539e-01", | ||
| 1//66 | ||
| ] | ||
|
|
||
| # Calculate b̂ = b - btilde for the embedded 4th-order method | ||
| αEEst = α .- btilde | ||
|
|
||
| # Convert to requested type | ||
| A = map(T, A) | ||
| α = map(T, α) | ||
| αEEst = map(T, αEEst) | ||
| c = map(T, c) | ||
|
|
||
| return DiffEqBase.ExplicitRKTableau(A, c, α, 5, | ||
| αEEst = αEEst, | ||
| adaptiveorder = 4, | ||
| fsal = true, | ||
| stability_size = 2.9) # Approximate stability region size | ||
| end | ||
|
|
||
| """ | ||
| constructTsit5ExplicitRKSimple(T::Type = Float64) | ||
|
|
||
| Simplified version using rational and decimal approximations. | ||
| Faster to construct but slightly less accurate than the full precision version. | ||
| """ | ||
| function constructTsit5ExplicitRKSimple(T::Type = Float64) | ||
| #Tested a few more variants and leaving them commented out here for future reference | ||
| # Build the A matrix with simpler rationals/decimals | ||
| # A = [0 0 0 0 0 0 0 | ||
| # 0.161 0 0 0 0 0 0 | ||
| # -0.00848 0.3355 0 0 0 0 0 | ||
| # 2.8972 -6.3594 4.3623 0 0 0 0 | ||
| # 5.3259 -11.7489 7.4955 -0.0925 0 0 0 | ||
| # 5.8615 -12.9210 8.1594 -0.0716 -0.0283 0 0 | ||
| # 0.09646 0.01 0.4799 1.3790 -3.2901 2.3247 0] | ||
| # A = [0 0 0 0 0 0 0 | ||
| # 161//1000 0 0 0 0 0 0 | ||
| # -8480655492356989//1000000000000000000 335480655492357//1000000000000000 0 0 0 0 0 | ||
| # 2897153057105493//1000000000000000 -6359448489975075//1000000000000000 4362295432869582//1000000000000000 0 0 0 0 | ||
| # 5325864828439257//1000000000000000 -11748883564062828//10000000000000000 7495539342889836//1000000000000000 -92495066361755//1000000000000000 0 0 0 | ||
| # 5861455442946420//1000000000000000 -12920969317847109//1000000000000000 8159367898576159//1000000000000000 -71584973281401//1000000000000000 -28269050394068//1000000000000000 0 0 | ||
| # 96460766818065//1000000000000000 1//100 479889650414500//1000000000000000 1379008574103742//1000000000000000 -3290069515436081//1000000000000000 2324710524099774//1000000000000000 0] | ||
|
|
||
| # A = Float64.(A) | ||
| A=[0 0 0 0 0 0 0 | ||
| 14//87 0 0 0 0 0 0 | ||
| -1//117 50//149 0 0 0 0 0 | ||
| 310//107 -407//64 301//69 0 0 0 0 | ||
| 474//89 -2479//211 817//109 -5//54 0 0 0 | ||
| 381//65 -491//38 563//69 -19//265 -3//106 0 0 | ||
| 8//83 1//100 107//223 131//95 -329//100 179//77 0] | ||
| # A=[0.0 0.0 0.0 0.0 0.0 0.0 0.0 | ||
| # 0.161 0.0 0.0 0.0 0.0 0.0 0.0 | ||
| # -0.008484 0.3354 0.0 0.0 0.0 0.0 0.0 | ||
| # 2.896 -6.36 4.363 0.0 0.0 0.0 0.0 | ||
| # 5.324 -1.175 7.496 -0.09247 0.0 0.0 0.0 | ||
| # 5.863 -12.92 8.16 -0.0716 -0.02827 0.0 0.0 | ||
| # 0.09644 0.01 0.48 1.379 -3.291 2.324 0.0] | ||
|
|
||
| # Time nodes | ||
| c = [0, 0.161, 0.327, 0.9, 0.9800255409045097, 1.0, 1.0] | ||
|
|
||
|
|
||
| # Solution weights (5th order) | ||
| α = [0.09468075576583945, 0.009183565540343254, 0.4877705284247616, | ||
| 1.234297566930479, -2.7077123499835256, 1.866628418170587, | ||
| 0.015151515151515152] | ||
|
|
||
| # Error estimate - computed from btilde | ||
| btilde = [-0.00178001105222577714, -0.0008164344596567469, 0.007880878010261995, | ||
| -0.1447110071732629, 0.5823571654525552, -0.45808210592918697, | ||
| 0.015151515151515152] | ||
|
|
||
| αEEst = α .- btilde | ||
|
|
||
| # Convert to requested type | ||
| A = map(T, A) | ||
| α = map(T, α) | ||
| αEEst = map(T, αEEst) | ||
| c = map(T, c) | ||
|
|
||
| return DiffEqBase.ExplicitRKTableau(A, c, α, 5, | ||
| αEEst = αEEst, | ||
| adaptiveorder = 4, | ||
| fsal = true, | ||
| stability_size = 2.9) | ||
| end | ||
|
|
||
| # Example usage: | ||
| # tableau = constructTsit5ExplicitRK() | ||
| # solve(prob, ExplicitRK(tableau = tableau)) |
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
@oscardssmith : Thanks for the feedback and suggestion. Apologies I was not familiar with this. Could you please check if this change looks right?