``QBCAPPOW`` takes an integer "n" between 5 and 31, such that maximum addressable qubits in a QInterface instance is 2^n. n=5 would be 32 qubits per QInterface instance, n=6 is the defaullt at 64 qubits per, n=7 addresses up to 128 qubits per, and so on up to n=31. "Addressable" qubits does not mean that the qubits can necessarily by allocated on the particular system. However, ``QUnit`` Schmidt decomposition optimizations and/or sparse state vector optimizations do render certain very high-qubit-width circuits tractable, when they stay well below the limit of total arbitrary entanglement. (Reducing representational entanglement happens almost entirely "under-the-hood," in ``QUnit``.)
0 commit comments