|
| 1 | +""" |
| 2 | +Offline benchmark to test the long document QA throughput. |
| 3 | +
|
| 4 | +Example usage: |
| 5 | + # This command run the vllm with 50GB CPU memory for offloading |
| 6 | + # The workload samples 8 different prompts with a default input |
| 7 | + # length of 20000 tokens, then replicates each prompt 2 times |
| 8 | + # in random order. |
| 9 | + python benchmark_long_document_qa_throughput.py \ |
| 10 | + --model meta-llama/Llama-2-7b-chat-hf \ |
| 11 | + --enable-prefix-caching \ |
| 12 | + --num-documents 8 \ |
| 13 | + --repeat-count 2 |
| 14 | +
|
| 15 | +Commandline arguments: |
| 16 | + --num-documents: The number of documents to sample prompts from. |
| 17 | +
|
| 18 | + --document-length: The length of each document in tokens. |
| 19 | + (Optional, default: 20000) |
| 20 | +
|
| 21 | + --output-len: The number of tokens to generate for each prompt. |
| 22 | + (Optional, default: 10) |
| 23 | +
|
| 24 | + --repeat-count: The number of times to repeat each prompt. |
| 25 | + (Optional, default: 2) |
| 26 | +
|
| 27 | + --repeat-mode: The mode to repeat prompts. The supported modes are: |
| 28 | + - 'random': shuffle the prompts randomly. (Default) |
| 29 | + - 'tile': the entire prompt list is repeated in sequence. (Potentially |
| 30 | + lowest cache hit) |
| 31 | + - 'interleave': each prompt is repeated consecutively before |
| 32 | + moving to the next element. (Highest cache hit) |
| 33 | + |
| 34 | + --shuffle-seed: Random seed when the repeat mode is "random". |
| 35 | + (Optional, default: 0) |
| 36 | +
|
| 37 | +In the meantime, it also supports all the vLLM engine args to initialize the |
| 38 | +LLM engine. You can refer to the `vllm.engine.arg_utils.EngineArgs` for more |
| 39 | +details. |
| 40 | +""" |
| 41 | + |
| 42 | +import dataclasses |
| 43 | +import random |
| 44 | +import time |
| 45 | + |
| 46 | +from vllm import LLM, SamplingParams |
| 47 | +from vllm.engine.arg_utils import EngineArgs |
| 48 | +from vllm.utils import FlexibleArgumentParser |
| 49 | + |
| 50 | + |
| 51 | +def test_long_document_qa(llm=None, sampling_params=None, prompts=None): |
| 52 | + """ |
| 53 | + Test long document QA with the given prompts and sampling parameters. |
| 54 | + Print the time spent in processing all the prompts. |
| 55 | +
|
| 56 | + Args: |
| 57 | + llm: The language model used for generating responses. |
| 58 | + sampling_params: Sampling parameter used to generate the response. |
| 59 | + prompts: A list of prompt strings to be processed by the LLM. |
| 60 | + """ |
| 61 | + start_time = time.time() |
| 62 | + llm.generate(prompts, sampling_params=sampling_params) |
| 63 | + end_time = time.time() |
| 64 | + print(f"Time to execute all requests: {end_time - start_time:.4f} secs") |
| 65 | + |
| 66 | + |
| 67 | +def repeat_prompts(prompts, repeat_count, mode: str): |
| 68 | + """ |
| 69 | + Repeat each prompt in the list for a specified number of times. |
| 70 | + The order of prompts in the output list depends on the mode. |
| 71 | +
|
| 72 | + Args: |
| 73 | + prompts: A list of prompts to be repeated. |
| 74 | + repeat_count: The number of times each prompt is repeated. |
| 75 | + mode: The mode of repetition. Supported modes are: |
| 76 | + - 'random': Shuffle the prompts randomly after repetition. |
| 77 | + - 'tile': Repeat the entire prompt list in sequence. |
| 78 | + Example: [1, 2, 3] -> [1, 2, 3, 1, 2, 3]. |
| 79 | + - 'interleave': Repeat each prompt consecutively before moving to |
| 80 | + the next. Example: [1, 2, 3] -> [1, 1, 2, 2, 3, 3]. |
| 81 | +
|
| 82 | + Returns: |
| 83 | + A list of repeated prompts in the specified order. |
| 84 | +
|
| 85 | + Raises: |
| 86 | + ValueError: If an invalid mode is provided. |
| 87 | + """ |
| 88 | + print("Repeat mode: ", mode) |
| 89 | + if mode == 'random': |
| 90 | + repeated_prompts = prompts * repeat_count |
| 91 | + random.shuffle(repeated_prompts) |
| 92 | + return repeated_prompts |
| 93 | + elif mode == 'tile': |
| 94 | + return prompts * repeat_count |
| 95 | + elif mode == 'interleave': |
| 96 | + repeated_prompts = [] |
| 97 | + for prompt in prompts: |
| 98 | + repeated_prompts.extend([prompt] * repeat_count) |
| 99 | + return repeated_prompts |
| 100 | + else: |
| 101 | + raise ValueError(f"Invalid mode: {mode}, only support " |
| 102 | + "'random', 'tile', 'interleave'") |
| 103 | + |
| 104 | + |
| 105 | +def main(args): |
| 106 | + random.seed(args.shuffle_seed) |
| 107 | + |
| 108 | + # Prepare the prompts: |
| 109 | + # we append the document id at the beginning to avoid any of the document |
| 110 | + # being the prefix of other documents |
| 111 | + prompts = [ |
| 112 | + str(i) + ' '.join(['hi'] * args.document_length) |
| 113 | + for i in range(args.num_documents) |
| 114 | + ] |
| 115 | + |
| 116 | + prompts = repeat_prompts(prompts, args.repeat_count, mode=args.repeat_mode) |
| 117 | + |
| 118 | + warmup_prompts = [ |
| 119 | + "This is warm up request " + str(i) + \ |
| 120 | + ' '.join(['hi'] * args.document_length) |
| 121 | + for i in range(args.num_documents)] |
| 122 | + |
| 123 | + # Create the LLM engine |
| 124 | + engine_args = EngineArgs.from_cli_args(args) |
| 125 | + llm = LLM(**dataclasses.asdict(engine_args)) |
| 126 | + sampling_params = SamplingParams(temperature=0, max_tokens=args.output_len) |
| 127 | + |
| 128 | + print("------warm up------") |
| 129 | + test_long_document_qa( |
| 130 | + llm=llm, |
| 131 | + prompts=warmup_prompts, |
| 132 | + sampling_params=sampling_params, |
| 133 | + ) |
| 134 | + |
| 135 | + print("------start generating------") |
| 136 | + test_long_document_qa( |
| 137 | + llm=llm, |
| 138 | + prompts=prompts, |
| 139 | + sampling_params=sampling_params, |
| 140 | + ) |
| 141 | + |
| 142 | + |
| 143 | +if __name__ == "__main__": |
| 144 | + parser = FlexibleArgumentParser( |
| 145 | + description= |
| 146 | + 'Benchmark the performance with or without automatic prefix caching.') |
| 147 | + |
| 148 | + parser.add_argument( |
| 149 | + '--document-length', |
| 150 | + type=int, |
| 151 | + # Roughly the number of tokens for a system paper, |
| 152 | + # excluding images |
| 153 | + default=20000, |
| 154 | + help='Range of input lengths for sampling prompts,' |
| 155 | + 'specified as "min:max" (e.g., "128:256").') |
| 156 | + |
| 157 | + parser.add_argument('--num-documents', |
| 158 | + type=int, |
| 159 | + default=8, |
| 160 | + help='Range of input lengths for sampling prompts,' |
| 161 | + 'specified as "min:max" (e.g., "128:256").') |
| 162 | + |
| 163 | + parser.add_argument('--output-len', type=int, default=10) |
| 164 | + |
| 165 | + parser.add_argument('--repeat-count', |
| 166 | + type=int, |
| 167 | + default=2, |
| 168 | + help='Number of times to repeat each prompt') |
| 169 | + |
| 170 | + parser.add_argument("--repeat-mode", |
| 171 | + type=str, |
| 172 | + default='random', |
| 173 | + help='The mode to repeat prompts. The supported ' |
| 174 | + 'modes are "random", "tile", and "interleave". ' |
| 175 | + 'See repeat_prompts() in the source code for details.') |
| 176 | + |
| 177 | + parser.add_argument("--shuffle-seed", |
| 178 | + type=int, |
| 179 | + default=0, |
| 180 | + help='Random seed when the repeat mode is "random"') |
| 181 | + |
| 182 | + parser = EngineArgs.add_cli_args(parser) |
| 183 | + args = parser.parse_args() |
| 184 | + main(args) |
0 commit comments