@@ -187,7 +187,7 @@ cdef class FunctionFieldElement(FieldElement):
187187
188188 Now an example in a nontrivial extension of a rational function field::
189189
190- sage: # needs sage. modules sage . rings. function_field
190+ sage: # needs sage. rings. function_field
191191 sage: K. <x> = FunctionField( QQ) ; R. <y> = K[]
192192 sage: L. <y> = K. extension( y^ 2 - x* y + 4* x^ 3)
193193 sage: y. matrix( )
@@ -199,7 +199,7 @@ cdef class FunctionFieldElement(FieldElement):
199199 An example in a relative extension, where neither function
200200 field is rational::
201201
202- sage: # needs sage. modules sage . rings. function_field
202+ sage: # needs sage. rings. function_field
203203 sage: K. <x> = FunctionField( QQ)
204204 sage: R. <y> = K[]
205205 sage: L. <y> = K. extension( y^ 2 - x* y + 4* x^ 3)
@@ -222,7 +222,7 @@ cdef class FunctionFieldElement(FieldElement):
222222 We show that this matrix does indeed work as expected when making a
223223 vector space from a function field::
224224
225- sage: # needs sage. modules sage . rings. function_field
225+ sage: # needs sage. rings. function_field
226226 sage: K. <x> = FunctionField( QQ)
227227 sage: R. <y> = K[]
228228 sage: L. <y> = K. extension( y^ 5 - ( x^ 3 + 2* x* y + 1/x))
@@ -254,7 +254,7 @@ cdef class FunctionFieldElement(FieldElement):
254254
255255 sage: K.<x> = FunctionField(QQ); R.<y> = K[]
256256 sage: L.<y> = K.extension(y^2 - x*y + 4*x^3) # needs sage.rings.function_field
257- sage: y.trace() # needs sage.modules sage. rings.function_field
257+ sage: y.trace() # needs sage.rings.function_field
258258 x
259259 """
260260 return self .matrix().trace()
@@ -267,17 +267,17 @@ cdef class FunctionFieldElement(FieldElement):
267267
268268 sage: K.<x> = FunctionField(QQ); R.<y> = K[]
269269 sage: L.<y> = K.extension(y^2 - x*y + 4*x^3) # needs sage.rings.function_field
270- sage: y.norm() # needs sage.modules sage. rings.function_field
270+ sage: y.norm() # needs sage.rings.function_field
271271 4*x^3
272272
273273 The norm is relative::
274274
275275 sage: K.<x> = FunctionField(QQ); R.<y> = K[]
276276 sage: L.<y> = K.extension(y^2 - x*y + 4*x^3); R.<z> = L[] # needs sage.rings.function_field
277277 sage: M.<z> = L.extension(z^3 - y^2*z + x) # needs sage.rings.function_field
278- sage: z.norm() # needs sage.modules sage. rings.function_field
278+ sage: z.norm() # needs sage.rings.function_field
279279 -x
280- sage: z.norm().parent() # needs sage.modules sage. rings.function_field
280+ sage: z.norm().parent() # needs sage.rings.function_field
281281 Function field in y defined by y^2 - x*y + 4*x^3
282282 """
283283 return self .matrix().determinant()
@@ -326,13 +326,15 @@ cdef class FunctionFieldElement(FieldElement):
326326 EXAMPLES::
327327
328328 sage: K.<x> = FunctionField(QQ); R.<y> = K[]
329- sage: L.<y> = K.extension(y^2 - x*y + 4*x^3); R.<z> = L[] # needs sage.rings.function_field
330- sage: M.<z> = L.extension(z^3 - y^2*z + x) # needs sage.rings.function_field
331329 sage: x.characteristic_polynomial('W') # needs sage.modules
332330 W - x
333- sage: y.characteristic_polynomial('W') # needs sage.modules sage.rings.function_field
331+
332+ sage: # needs sage.rings.function_field
333+ sage: L.<y> = K.extension(y^2 - x*y + 4*x^3); R.<z> = L[]
334+ sage: M.<z> = L.extension(z^3 - y^2*z + x)
335+ sage: y.characteristic_polynomial('W')
334336 W^2 - x*W + 4*x^3
335- sage: z.characteristic_polynomial('W') # needs sage.modules sage.rings.function_field
337+ sage: z.characteristic_polynomial('W')
336338 W^3 + (-x*y + 4*x^3)*W + x
337339 """
338340 return self .matrix().characteristic_polynomial(* args, ** kwds)
@@ -347,13 +349,15 @@ cdef class FunctionFieldElement(FieldElement):
347349 EXAMPLES::
348350
349351 sage: K.<x> = FunctionField(QQ); R.<y> = K[]
350- sage: L.<y> = K.extension(y^2 - x*y + 4*x^3); R.<z> = L[] # needs sage.rings.function_field
351- sage: M.<z> = L.extension(z^3 - y^2*z + x) # needs sage.rings.function_field
352352 sage: x.minimal_polynomial('W') # needs sage.modules
353353 W - x
354- sage: y.minimal_polynomial('W') # needs sage.modules sage.rings.function_field
354+
355+ sage: # needs sage.rings.function_field
356+ sage: L.<y> = K.extension(y^2 - x*y + 4*x^3); R.<z> = L[]
357+ sage: M.<z> = L.extension(z^3 - y^2*z + x)
358+ sage: y.minimal_polynomial('W')
355359 W^2 - x*W + 4*x^3
356- sage: z.minimal_polynomial('W') # needs sage.modules sage.rings.function_field
360+ sage: z.minimal_polynomial('W')
357361 W^3 + (-x*y + 4*x^3)*W + x
358362 """
359363 return self .matrix().minimal_polynomial(* args, ** kwds)
@@ -366,7 +370,7 @@ cdef class FunctionFieldElement(FieldElement):
366370
367371 EXAMPLES::
368372
369- sage: # needs sage. modules sage . rings. function_field
373+ sage: # needs sage. rings. function_field
370374 sage: K. <x> = FunctionField( QQ) ; R. <y> = K[]
371375 sage: L. <y> = K. extension( y^ 2 - x* y + 4* x^ 3)
372376 sage: y. is_integral( )
@@ -396,24 +400,25 @@ cdef class FunctionFieldElement(FieldElement):
396400
397401 sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[] # needs sage.rings.finite_rings
398402 sage: L.<y> = K.extension(Y^2 + Y + x +1/x) # needs sage.rings.finite_rings sage.rings.function_field
399- sage: (y^3 + x).differential() # needs sage.modules sage. rings.finite_rings sage.rings.function_field
403+ sage: (y^3 + x).differential() # needs sage.rings.finite_rings sage.rings.function_field
400404 (((x^2 + 1)/x^2)*y + (x^4 + x^3 + 1)/x^3) d(x)
401405
402406 TESTS:
403407
404408 Verify that :issue:`27712` is resolved::
405409
406410 sage: K.<x> = FunctionField(GF(31))
407- sage: R.<y> = K[]
408- sage: L.<y> = K.extension(y^2 - x) # needs sage.rings.function_field
409- sage: R.<z> = L[] # needs sage.rings.function_field
410- sage: M.<z> = L.extension(z^2 - y) # needs sage.rings.function_field
411-
412411 sage: x.differential() # needs sage.modules
413412 d(x)
414- sage: y.differential() # needs sage.modules sage.rings.function_field
413+
414+ sage: # needs sage.rings.function_field
415+ sage: R.<y> = K[]
416+ sage: L.<y> = K.extension(y^2 - x)
417+ sage: R.<z> = L[]
418+ sage: M.<z> = L.extension(z^2 - y)
419+ sage: y.differential()
415420 (16/x*y) d(x)
416- sage: z.differential() # needs sage.modules sage.rings.function_field
421+ sage: z.differential()
417422 (8/x*z) d(x)
418423 """
419424 F = self .parent()
@@ -436,7 +441,7 @@ cdef class FunctionFieldElement(FieldElement):
436441
437442 sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[] # needs sage.rings.finite_rings
438443 sage: L.<y> = K.extension(Y^2 + Y + x + 1/x) # needs sage.rings.finite_rings sage.rings.function_field
439- sage: (y^3 + x).derivative() # needs sage.modules sage. rings.finite_rings sage.rings.function_field
444+ sage: (y^3 + x).derivative() # needs sage.rings.finite_rings sage.rings.function_field
440445 ((x^2 + 1)/x^2)*y + (x^4 + x^3 + 1)/x^3
441446 """
442447 D = self .parent().derivation()
@@ -458,14 +463,14 @@ cdef class FunctionFieldElement(FieldElement):
458463
459464 sage: K.<t> = FunctionField(GF(2))
460465 sage: f = t^2
461- sage: f.higher_derivative(2) # needs sage.modules sage. rings.function_field
466+ sage: f.higher_derivative(2) # needs sage.rings.function_field
462467 1
463468
464469 ::
465470
466471 sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[] # needs sage.rings.finite_rings
467472 sage: L.<y> = K.extension(Y^2 + Y + x + 1/x) # needs sage.rings.finite_rings sage.rings.function_field
468- sage: (y^3 + x).higher_derivative(2) # needs sage.modules sage. rings.finite_rings sage.rings.function_field
473+ sage: (y^3 + x).higher_derivative(2) # needs sage.rings.finite_rings sage.rings.function_field
469474 1/x^3*y + (x^6 + x^4 + x^3 + x^2 + x + 1)/x^5
470475 """
471476 D = self .parent().higher_derivation()
@@ -489,7 +494,7 @@ cdef class FunctionFieldElement(FieldElement):
489494
490495 sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
491496 sage: L.<y> = K.extension(Y^2 + Y + x + 1/x) # needs sage.rings.function_field
492- sage: y.divisor() # needs sage.modules sage. rings.function_field
497+ sage: y.divisor() # needs sage.rings.function_field
493498 - Place (1/x, 1/x*y)
494499 - Place (x, x*y)
495500 + 2*Place (x + 1, x*y)
@@ -517,7 +522,7 @@ cdef class FunctionFieldElement(FieldElement):
517522
518523 sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[] # needs sage.rings.finite_rings
519524 sage: L.<y> = K.extension(Y^2 + Y + x + 1/x) # needs sage.rings.finite_rings sage.rings.function_field
520- sage: (x/y).divisor_of_zeros() # needs sage.modules sage. rings.finite_rings sage.rings.function_field
525+ sage: (x/y).divisor_of_zeros() # needs sage.rings.finite_rings sage.rings.function_field
521526 3*Place (x, x*y)
522527 """
523528 if self .is_zero():
@@ -544,7 +549,7 @@ cdef class FunctionFieldElement(FieldElement):
544549
545550 sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[] # needs sage.rings.finite_rings
546551 sage: L.<y> = K.extension(Y^2 + Y + x + 1/x) # needs sage.rings.finite_rings sage.rings.function_field
547- sage: (x/y).divisor_of_poles() # needs sage.modules sage. rings.finite_rings sage.rings.function_field
552+ sage: (x/y).divisor_of_poles() # needs sage.rings.finite_rings sage.rings.function_field
548553 Place (1/x, 1/x*y) + 2*Place (x + 1, x*y)
549554 """
550555 if self .is_zero():
@@ -570,7 +575,7 @@ cdef class FunctionFieldElement(FieldElement):
570575
571576 sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[] # needs sage.rings.finite_rings
572577 sage: L.<y> = K.extension(Y^2 + Y + x + 1/x) # needs sage.rings.finite_rings sage.rings.function_field
573- sage: (x/y).zeros() # needs sage.modules sage. rings.finite_rings sage.rings.function_field
578+ sage: (x/y).zeros() # needs sage.rings.finite_rings sage.rings.function_field
574579 [Place (x, x*y)]
575580 """
576581 return self .divisor_of_zeros().support()
@@ -590,7 +595,7 @@ cdef class FunctionFieldElement(FieldElement):
590595
591596 sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[] # needs sage.rings.finite_rings
592597 sage: L.<y> = K.extension(Y^2 + Y + x + 1/x) # needs sage.rings.finite_rings sage.rings.function_field
593- sage: (x/y).poles() # needs sage.modules sage. rings.finite_rings sage.rings.function_field
598+ sage: (x/y).poles() # needs sage.rings.finite_rings sage.rings.function_field
594599 [Place (1/x, 1/x*y), Place (x + 1, x*y)]
595600 """
596601 return self .divisor_of_poles().support()
@@ -607,8 +612,8 @@ cdef class FunctionFieldElement(FieldElement):
607612
608613 sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
609614 sage: L.<y> = K.extension(Y^2 + Y + x + 1/x) # needs sage.rings.function_field
610- sage: p = L.places_infinite()[0] # needs sage.modules sage. rings.function_field
611- sage: y.valuation(p) # needs sage.modules sage. rings.function_field
615+ sage: p = L.places_infinite()[0] # needs sage.rings.function_field
616+ sage: y.valuation(p) # needs sage.rings.function_field
612617 -1
613618
614619 ::
0 commit comments