@@ -1146,51 +1146,53 @@ def to_dict(self, orient='dict', into=dict):
11461146
11471147 Returns
11481148 -------
1149- result : collections.Mapping like {column -> {index -> value}}
1149+ dict, list or collections.Mapping
1150+ Return a collections.Mapping object representing the DataFrame.
1151+ The resulting transformation depends on the `orient` parameter.
11501152
11511153 See Also
11521154 --------
1153- DataFrame.from_dict: create a DataFrame from a dictionary
1154- DataFrame.to_json: convert a DataFrame to JSON format
1155+ DataFrame.from_dict: Create a DataFrame from a dictionary.
1156+ DataFrame.to_json: Convert a DataFrame to JSON format.
11551157
11561158 Examples
11571159 --------
11581160 >>> df = pd.DataFrame({'col1': [1, 2],
11591161 ... 'col2': [0.5, 0.75]},
1160- ... index=['a ', 'b '])
1162+ ... index=['row1 ', 'row2 '])
11611163 >>> df
1162- col1 col2
1163- a 1 0.50
1164- b 2 0.75
1164+ col1 col2
1165+ row1 1 0.50
1166+ row2 2 0.75
11651167 >>> df.to_dict()
1166- {'col1': {'a ': 1, 'b ': 2}, 'col2': {'a ': 0.5, 'b ': 0.75}}
1168+ {'col1': {'row1 ': 1, 'row2 ': 2}, 'col2': {'row1 ': 0.5, 'row2 ': 0.75}}
11671169
11681170 You can specify the return orientation.
11691171
11701172 >>> df.to_dict('series')
1171- {'col1': a 1
1172- b 2
1173- Name: col1, dtype: int64,
1174- 'col2': a 0.50
1175- b 0.75
1176- Name: col2, dtype: float64}
1173+ {'col1': row1 1
1174+ row2 2
1175+ Name: col1, dtype: int64,
1176+ 'col2': row1 0.50
1177+ row2 0.75
1178+ Name: col2, dtype: float64}
11771179
11781180 >>> df.to_dict('split')
1179- {'index': ['a ', 'b '], 'columns': ['col1', 'col2'],
1181+ {'index': ['row1 ', 'row2 '], 'columns': ['col1', 'col2'],
11801182 'data': [[1.0, 0.5], [2.0, 0.75]]}
11811183
11821184 >>> df.to_dict('records')
11831185 [{'col1': 1.0, 'col2': 0.5}, {'col1': 2.0, 'col2': 0.75}]
11841186
11851187 >>> df.to_dict('index')
1186- {'a ': {'col1': 1.0 , 'col2': 0.5}, 'b ': {'col1': 2.0 , 'col2': 0.75}}
1188+ {'row1 ': {'col1': 1, 'col2': 0.5}, 'row2 ': {'col1': 2, 'col2': 0.75}}
11871189
11881190 You can also specify the mapping type.
11891191
11901192 >>> from collections import OrderedDict, defaultdict
11911193 >>> df.to_dict(into=OrderedDict)
1192- OrderedDict([('col1', OrderedDict([('a ', 1), ('b ', 2)])),
1193- ('col2', OrderedDict([('a ', 0.5), ('b ', 0.75)]))])
1194+ OrderedDict([('col1', OrderedDict([('row1 ', 1), ('row2 ', 2)])),
1195+ ('col2', OrderedDict([('row1 ', 0.5), ('row2 ', 0.75)]))])
11941196
11951197 If you want a `defaultdict`, you need to initialize it:
11961198
0 commit comments