|
| 1 | +/** |
| 2 | + * @license |
| 3 | + * Copyright 2022 Google LLC. All Rights Reserved. |
| 4 | + * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | + * you may not use this file except in compliance with the License. |
| 6 | + * You may obtain a copy of the License at |
| 7 | + * |
| 8 | + * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | + * |
| 10 | + * Unless required by applicable law or agreed to in writing, software |
| 11 | + * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | + * See the License for the specific language governing permissions and |
| 14 | + * limitations under the License. |
| 15 | + * ============================================================================= |
| 16 | + */ |
| 17 | + |
| 18 | +import {KernelConfig, KernelFunc, RaggedTensorToTensor, RaggedTensorToTensorAttrs, RaggedTensorToTensorInputs, TensorInfo, TypedArray} from '@tensorflow/tfjs-core'; |
| 19 | + |
| 20 | +import {MathBackendCPU} from '../backend_cpu'; |
| 21 | + |
| 22 | +import {raggedTensorToTensorImpl} from './RaggedTensorToTensor_impl'; |
| 23 | + |
| 24 | +export function raggedTensorToTensor(args: { |
| 25 | + inputs: RaggedTensorToTensorInputs, |
| 26 | + backend: MathBackendCPU, |
| 27 | + attrs: RaggedTensorToTensorAttrs |
| 28 | +}): TensorInfo { |
| 29 | + const {inputs, backend, attrs} = args; |
| 30 | + const {shape, values, defaultValue, rowPartitionTensors} = inputs; |
| 31 | + const {rowPartitionTypes} = attrs; |
| 32 | + |
| 33 | + const $shape = backend.data.get(shape.dataId).values as TypedArray; |
| 34 | + const $values = backend.data.get(values.dataId).values as TypedArray; |
| 35 | + const $defaultValue = |
| 36 | + backend.data.get(defaultValue.dataId).values as TypedArray; |
| 37 | + const $rowPartitionValues = rowPartitionTensors.map( |
| 38 | + t => backend.data.get(t.dataId).values as TypedArray); |
| 39 | + const rowPartitionValuesShapes = rowPartitionTensors.map(t => t.shape); |
| 40 | + |
| 41 | + const [outputShape, output] = raggedTensorToTensorImpl( |
| 42 | + $shape, shape.shape, $values, values.shape, values.dtype, $defaultValue, |
| 43 | + defaultValue.shape, $rowPartitionValues, rowPartitionValuesShapes, |
| 44 | + rowPartitionTypes); |
| 45 | + return backend.makeTensorInfo(outputShape, values.dtype, output); |
| 46 | +} |
| 47 | + |
| 48 | +export const raggedTensorToTensorConfig: KernelConfig = { |
| 49 | + kernelName: RaggedTensorToTensor, |
| 50 | + backendName: 'cpu', |
| 51 | + kernelFunc: raggedTensorToTensor as {} as KernelFunc, |
| 52 | +}; |
0 commit comments