@@ -532,11 +532,11 @@ static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const
532532 /* Operations: 7 mul, 5 sqr, 24 add/cmov/half/mul_int/negate/normalize_weak/normalizes_to_zero */
533533 secp256k1_fe zz , u1 , u2 , s1 , s2 , t , tt , m , n , q , rr ;
534534 secp256k1_fe m_alt , rr_alt ;
535- int infinity , degenerate ;
535+ int degenerate ;
536536 VERIFY_CHECK (!b -> infinity );
537537 VERIFY_CHECK (a -> infinity == 0 || a -> infinity == 1 );
538538
539- /** In:
539+ /* In:
540540 * Eric Brier and Marc Joye, Weierstrass Elliptic Curves and Side-Channel Attacks.
541541 * In D. Naccache and P. Paillier, Eds., Public Key Cryptography, vol. 2274 of Lecture Notes in Computer Science, pages 335-345. Springer-Verlag, 2002.
542542 * we find as solution for a unified addition/doubling formula:
@@ -598,10 +598,9 @@ static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const
598598 secp256k1_fe_negate (& m_alt , & u2 , 1 ); /* Malt = -X2*Z1^2 */
599599 secp256k1_fe_mul (& tt , & u1 , & m_alt ); /* tt = -U1*U2 (2) */
600600 secp256k1_fe_add (& rr , & tt ); /* rr = R = T^2-U1*U2 (3) */
601- /** If lambda = R/M = 0/0 we have a problem (except in the "trivial"
602- * case that Z = z1z2 = 0, and this is special-cased later on). */
603- degenerate = secp256k1_fe_normalizes_to_zero (& m ) &
604- secp256k1_fe_normalizes_to_zero (& rr );
601+ /* If lambda = R/M = R/0 we have a problem (except in the "trivial"
602+ * case that Z = z1z2 = 0, and this is special-cased later on). */
603+ degenerate = secp256k1_fe_normalizes_to_zero (& m );
605604 /* This only occurs when y1 == -y2 and x1^3 == x2^3, but x1 != x2.
606605 * This means either x1 == beta*x2 or beta*x1 == x2, where beta is
607606 * a nontrivial cube root of one. In either case, an alternate
@@ -613,7 +612,7 @@ static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const
613612
614613 secp256k1_fe_cmov (& rr_alt , & rr , !degenerate );
615614 secp256k1_fe_cmov (& m_alt , & m , !degenerate );
616- /* Now Ralt / Malt = lambda and is guaranteed not to be 0/ 0.
615+ /* Now Ralt / Malt = lambda and is guaranteed not to be Ralt / 0.
617616 * From here on out Ralt and Malt represent the numerator
618617 * and denominator of lambda; R and M represent the explicit
619618 * expressions x1^2 + x2^2 + x1x2 and y1 + y2. */
@@ -628,7 +627,6 @@ static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const
628627 secp256k1_fe_cmov (& n , & m , degenerate ); /* n = M^3 * Malt (2) */
629628 secp256k1_fe_sqr (& t , & rr_alt ); /* t = Ralt^2 (1) */
630629 secp256k1_fe_mul (& r -> z , & a -> z , & m_alt ); /* r->z = Z3 = Malt*Z (1) */
631- infinity = secp256k1_fe_normalizes_to_zero (& r -> z ) & ~a -> infinity ;
632630 secp256k1_fe_add (& t , & q ); /* t = Ralt^2 + Q (2) */
633631 r -> x = t ; /* r->x = X3 = Ralt^2 + Q (2) */
634632 secp256k1_fe_mul_int (& t , 2 ); /* t = 2*X3 (4) */
@@ -638,11 +636,28 @@ static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const
638636 secp256k1_fe_negate (& r -> y , & t , 3 ); /* r->y = -(Ralt*(2*X3 + Q) + M^3*Malt) (4) */
639637 secp256k1_fe_half (& r -> y ); /* r->y = Y3 = -(Ralt*(2*X3 + Q) + M^3*Malt)/2 (3) */
640638
641- /** In case a->infinity == 1, replace r with (b->x, b->y, 1). */
639+ /* In case a->infinity == 1, replace r with (b->x, b->y, 1). */
642640 secp256k1_fe_cmov (& r -> x , & b -> x , a -> infinity );
643641 secp256k1_fe_cmov (& r -> y , & b -> y , a -> infinity );
644642 secp256k1_fe_cmov (& r -> z , & secp256k1_fe_one , a -> infinity );
645- r -> infinity = infinity ;
643+
644+ /* Set r->infinity if r->z is 0.
645+ *
646+ * If a->infinity is set, then r->infinity = (r->z == 0) = (1 == 0) = false,
647+ * which is correct because the function assumes that b is not infinity.
648+ *
649+ * Now assume !a->infinity. This implies Z = Z1 != 0.
650+ *
651+ * Case y1 = -y2:
652+ * In this case we could have a = -b, namely if x1 = x2.
653+ * We have degenerate = true, r->z = (x1 - x2) * Z.
654+ * Then r->infinity = ((x1 - x2)Z == 0) = (x1 == x2) = (a == -b).
655+ *
656+ * Case y1 != -y2:
657+ * In this case, we can't have a = -b.
658+ * We have degenerate = false, r->z = (y1 + y2) * Z.
659+ * Then r->infinity = ((y1 + y2)Z == 0) = (y1 == -y2) = false. */
660+ r -> infinity = secp256k1_fe_normalizes_to_zero (& r -> z );
646661}
647662
648663static void secp256k1_gej_rescale (secp256k1_gej * r , const secp256k1_fe * s ) {
0 commit comments