@@ -44,7 +44,7 @@ def test_iris(self):
44
44
45
45
csep = class_separation (cov .transform (), self .iris_labels )
46
46
# deterministic result
47
- self .assertAlmostEqual (csep , 0.73068122 )
47
+ self .assertAlmostEqual (csep , 0.72981476 )
48
48
49
49
50
50
class TestLSML (MetricTestCase ):
@@ -133,7 +133,7 @@ def test_iris(self):
133
133
nca = NCA (max_iter = (100000 // n ), num_dims = 2 , tol = 1e-9 )
134
134
nca .fit (self .iris_points , self .iris_labels )
135
135
csep = class_separation (nca .transform (), self .iris_labels )
136
- self .assertLess (csep , 0.15 )
136
+ self .assertLess (csep , 0.20 )
137
137
138
138
def test_finite_differences (self ):
139
139
"""Test gradient of loss function
@@ -319,16 +319,17 @@ def test_iris(self):
319
319
# Full metric
320
320
mmc = MMC (convergence_threshold = 0.01 )
321
321
mmc .fit (self .iris_points , [a ,b ,c ,d ])
322
- expected = [[+ 0.00046504 , + 0.00083371 , - 0.00111959 , - 0.00165265 ],
323
- [+ 0.00083371 , + 0.00149466 , - 0.00200719 , - 0.00296284 ],
324
- [- 0.00111959 , - 0.00200719 , + 0.00269546 , + 0.00397881 ],
325
- [- 0.00165265 , - 0.00296284 , + 0.00397881 , + 0.00587320 ]]
322
+ expected = [[ 0.000514 , 0.000868 , - 0.001195 , - 0.001703 ],
323
+ [ 0.000868 , 0.001468 , - 0.002021 , - 0.002879 ],
324
+ [- 0.001195 , - 0.002021 , 0.002782 , 0.003964 ],
325
+ [- 0.001703 , - 0.002879 , 0.003964 , 0.005648 ]]
326
326
assert_array_almost_equal (expected , mmc .metric (), decimal = 6 )
327
327
328
328
# Diagonal metric
329
329
mmc = MMC (diagonal = True )
330
330
mmc .fit (self .iris_points , [a ,b ,c ,d ])
331
- expected = [0 , 0 , 1.21045968 , 1.22552608 ]
331
+ expected = [0 , 0 , 1.210220 , 1.228596 ]
332
+
332
333
assert_array_almost_equal (np .diag (expected ), mmc .metric (), decimal = 6 )
333
334
334
335
# Supervised Full
0 commit comments