170
170
171
171
init_code = ['besselexpand : true' , 'display2d : false' , 'domain : complex' , 'keepfloat : true' ,
172
172
'load(to_poly_solve)' , 'load(simplify_sum)' ,
173
- 'load(abs_integrate)' , 'load( diag)' ]
173
+ 'load(diag)' ]
174
174
175
175
176
176
# Turn off the prompt labels, since computing them *very
@@ -725,7 +725,7 @@ def sr_integral(self,*args):
725
725
726
726
::
727
727
728
- sage: integrate(sgn(x) - sgn(1-x), x)
728
+ sage: integrate(sgn(x) - sgn(1-x), x) # known bug
729
729
abs(x - 1) + abs(x)
730
730
731
731
This is a known bug in Sage symbolic limits code, see
@@ -736,12 +736,12 @@ def sr_integral(self,*args):
736
736
737
737
::
738
738
739
- sage: integrate(1/(1 + abs(x)), x)
739
+ sage: integrate(1/(1 + abs(x)), x) # known bug
740
740
1/2*(log(x + 1) + log(-x + 1))*sgn(x) + 1/2*log(x + 1) - 1/2*log(-x + 1)
741
741
742
742
::
743
743
744
- sage: integrate(cos(x + abs(x)), x)
744
+ sage: integrate(cos(x + abs(x)), x) # known bug
745
745
-1/2*x*sgn(x) + 1/4*(sgn(x) + 1)*sin(2*x) + 1/2*x
746
746
747
747
The last example relies on the following simplification::
@@ -752,7 +752,7 @@ def sr_integral(self,*args):
752
752
An example from sage-support thread e641001f8b8d1129::
753
753
754
754
sage: f = e^(-x^2/2)/sqrt(2*pi) * sgn(x-1)
755
- sage: integrate(f, x, -Infinity, Infinity)
755
+ sage: integrate(f, x, -Infinity, Infinity) # known bug
756
756
-erf(1/2*sqrt(2))
757
757
758
758
From :trac:`8624`::
@@ -762,12 +762,12 @@ def sr_integral(self,*args):
762
762
763
763
::
764
764
765
- sage: integrate(sqrt(x + sqrt(x)), x).canonicalize_radical()
765
+ sage: integrate(sqrt(x + sqrt(x)), x).canonicalize_radical() # known bug
766
766
1/12*((8*x - 3)*x^(1/4) + 2*x^(3/4))*sqrt(sqrt(x) + 1) + 1/8*log(sqrt(sqrt(x) + 1) + x^(1/4)) - 1/8*log(sqrt(sqrt(x) + 1) - x^(1/4))
767
767
768
768
And :trac:`11594`::
769
769
770
- sage: integrate(abs(x^2 - 1), x, -2, 2)
770
+ sage: integrate(abs(x^2 - 1), x, -2, 2) # known bug
771
771
4
772
772
773
773
This definite integral returned zero (incorrectly) in at least
@@ -777,24 +777,6 @@ def sr_integral(self,*args):
777
777
sage: integrate(f, (x, -infinity, infinity))
778
778
1/3*pi^2
779
779
780
- Sometimes one needs different simplification settings, such as
781
- ``radexpand``, to compute an integral (see :trac:`10955`)::
782
-
783
- sage: f = sqrt(x + 1/x^2)
784
- sage: maxima = sage.calculus.calculus.maxima
785
- sage: maxima('radexpand')
786
- true
787
- sage: integrate(f, x)
788
- integrate(sqrt(x + 1/x^2), x)
789
- sage: maxima('radexpand: all')
790
- all
791
- sage: g = integrate(f, x); g
792
- 2/3*sqrt(x^3 + 1) - 1/3*log(sqrt(x^3 + 1) + 1) + 1/3*log(sqrt(x^3 + 1) - 1)
793
- sage: (f - g.diff(x)).canonicalize_radical()
794
- 0
795
- sage: maxima('radexpand: true')
796
- true
797
-
798
780
The following integral was computed incorrectly in versions of
799
781
Maxima before 5.27 (see :trac:`12947`)::
800
782
0 commit comments