Skip to content

Commit c7a800b

Browse files
author
Xavier Caruso
committed
documentation
1 parent cd98ec4 commit c7a800b

File tree

3 files changed

+21
-10
lines changed

3 files changed

+21
-10
lines changed

src/doc/en/reference/oremodules/index.rst

Lines changed: 17 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -9,17 +9,28 @@ that is an additive map satisfying the following axiom
99
1010
\partial(x y) = \theta(x) \partial(y) + \partial(x) y
1111
12-
A Ore module over `(R, \theta, \partial)` is a `R`-module `M`
13-
equipped with a additive `f : M \to M` such that
12+
The Ore polynomial ring associated to these data is
13+
`\mathcal S = R[X; \theta, \partial]`; its elements are the
14+
usual polynomials over `R` but the multiplication is twisted
15+
according to the rule
1416

1517
.. MATH::
1618
17-
f(a x) = \theta(a) f(x) + \partial(a) x
19+
\partial(x y) = \theta(x) \partial(y) + \partial(x) y
20+
21+
We refer to :mod:`sage.rings.polynomial.ore_polynomial_ring.OrePolynomial`
22+
for more details.
23+
24+
A Ore module over `(R, \theta, \partial)` is by definition a
25+
module over `\mathcal S`; it is the same than a `R`-module `M`
26+
equipped with an additive `f : M \to M` such that
1827

19-
Such a map `f` is called a pseudomorphism.
28+
.. MATH::
29+
30+
f(a x) = \theta(a) f(x) + \partial(a) x
2031
21-
Equivalently, a Ore module is a module over the (noncommutative)
22-
Ore polynomial ring `\mathcal S = R[X; \theta, \partial]`.
32+
Such a map `f` is called a pseudomorphism
33+
(see also :meth:`sage.modules.free_module.FreeModule_generic.pseudohom`).
2334

2435
SageMath provides support for creating and manipulating Ore
2536
modules that are finite free over the base ring `R`.

src/sage/modules/ore_module.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -54,7 +54,7 @@
5454
sage: X*v
5555
(3*z^2 + 2*z, 2*z^2 + 4*z + 4)
5656
57-
The method :meth:`sage.rings.modules.ore_module.OreModule.pseudohom`
57+
The method :meth:`sage.modules.ore_module.OreModule.pseudohom`
5858
returns the map `f` defining the action of `X`::
5959
6060
sage: M.pseudohom()
@@ -162,7 +162,7 @@
162162
.. RUBRIC:: Morphisms of Ore modules
163163
164164
For a tutorial on morphisms of Ore modules, we refer to
165-
:mod:`sage.modules.ore_modules_morphism`.
165+
:mod:`sage.modules.ore_module_morphism`.
166166
167167
AUTHOR:
168168
@@ -1172,7 +1172,7 @@ def identity_morphism(self):
11721172
def _span(self, gens):
11731173
r"""
11741174
Return a matrix whose lines form a basis over the base field
1175-
of the submodule of this Ore modules generated over the Ore
1175+
of the submodule of this Ore module generated over the Ore
11761176
ring by ``gens``.
11771177
11781178
INPUT:

src/sage/modules/ore_module_morphism.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -124,7 +124,7 @@
124124
True
125125
126126
Actually, in our use case, one can, more simply, use the method
127-
:meth:`sage.modules.ore_modules_morphism.OreModuleMorphism.is_injective`::
127+
:meth:`sage.modules.ore_module_morphism.OreModuleMorphism.is_injective`::
128128
129129
sage: f.is_injective()
130130
True

0 commit comments

Comments
 (0)