Skip to content

Commit a5187f2

Browse files
committed
Account for random output in some tests
1 parent f619b6f commit a5187f2

File tree

2 files changed

+14
-7
lines changed

2 files changed

+14
-7
lines changed

src/sage/arith/misc.py

Lines changed: 13 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -2691,9 +2691,14 @@ def factor(n, proof=None, int_=False, algorithm='pari', verbose=0, **kwds):
26912691
26922692
Any object which has a factor method can be factored like this::
26932693
2694-
sage: K.<i> = QuadraticField(-1) # needs sage.rings.number_field
2695-
sage: factor(122 - 454*i) # needs sage.rings.number_field
2696-
(-i - 2)^3 * (-i - 1)^3 * (3*i + 2) * (i + 4)
2694+
sage: # needs sage.rings.number_field
2695+
sage: K.<i> = QuadraticField(-1)
2696+
sage: f = factor(122 - 454*i); f # random
2697+
(i) * (i - 1)^3 * (i + 2)^3 * (3*i + 2) * (i + 4)
2698+
sage: len(f)
2699+
4
2700+
sage: product(p[0]^p[1] for p in f) * f.unit()
2701+
-454*i + 122
26972702
26982703
To access the data in a factorization::
26992704
@@ -2775,8 +2780,10 @@ def radical(n, *args, **kwds):
27752780
...
27762781
ArithmeticError: radical of 0 is not defined
27772782
sage: K.<i> = QuadraticField(-1) # needs sage.rings.number_field
2778-
sage: radical(K(2)) # needs sage.rings.number_field
2779-
-i - 1
2783+
sage: r = radical(K(2)); r # random, needs sage.rings.number_field
2784+
i - 1
2785+
sage: r.norm() # needs sage.rings.number_field
2786+
2
27802787
27812788
Tests with numpy and gmpy2 numbers::
27822789
@@ -3031,7 +3038,7 @@ def is_squarefree(n):
30313038
sage: is_squarefree(O(2))
30323039
False
30333040
sage: O(2).factor()
3034-
(-I) * (-I - 1)^2
3041+
(...) * (...)^2
30353042
30363043
This method fails on domains which are not Unique Factorization Domains::
30373044

src/sage/rings/number_field/number_field_ideal.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -2069,7 +2069,7 @@ def ramification_index(self):
20692069
sage: K.<a> = NumberField(x^2 + 2); K
20702070
Number Field in a with defining polynomial x^2 + 2
20712071
sage: f = K.factor(2); f
2072-
(Fractional ideal (a))^2
2072+
(Fractional ideal (...a))^2
20732073
sage: f[0][0].ramification_index()
20742074
2
20752075
sage: K.ideal(13).ramification_index()

0 commit comments

Comments
 (0)