Skip to content

Commit 89e4c05

Browse files
author
Matthias Koeppe
committed
src/sage/rings/lazy_series_ring.py: More block tags
1 parent ad56358 commit 89e4c05

File tree

1 file changed

+30
-33
lines changed

1 file changed

+30
-33
lines changed

src/sage/rings/lazy_series_ring.py

Lines changed: 30 additions & 33 deletions
Original file line numberDiff line numberDiff line change
@@ -2240,13 +2240,12 @@ class LazyCompletionGradedAlgebra(LazySeriesRing):
22402240
22412241
EXAMPLES::
22422242
2243-
sage: NCSF = NonCommutativeSymmetricFunctions(QQ) # needs sage.modules
2244-
sage: S = NCSF.Complete() # needs sage.modules
2245-
sage: L = S.formal_series_ring(); L # needs sage.modules
2243+
sage: # needs sage.modules
2244+
sage: NCSF = NonCommutativeSymmetricFunctions(QQ)
2245+
sage: S = NCSF.Complete()
2246+
sage: L = S.formal_series_ring(); L
22462247
Lazy completion of Non-Commutative Symmetric Functions
22472248
over the Rational Field in the Complete basis
2248-
2249-
sage: # needs sage.modules
22502249
sage: f = 1 / (1 - L(S[1])); f
22512250
S[] + S[1] + (S[1,1]) + (S[1,1,1]) + (S[1,1,1,1]) + (S[1,1,1,1,1])
22522251
+ (S[1,1,1,1,1,1]) + O^7
@@ -2275,23 +2274,23 @@ def __init__(self, basis, sparse=True, category=None):
22752274
22762275
sage: LazySymmetricFunctions.options.halting_precision(6)
22772276
2278-
sage: s = SymmetricFunctions(QQ).s() # needs sage.modules
2279-
sage: L = LazySymmetricFunctions(s) # needs sage.modules
2280-
sage: TestSuite(L).run() # needs lrcalc_python sage.modules
2281-
2282-
sage: p = SymmetricFunctions(GF(5)).p() # needs sage.modules
2283-
sage: L = LazySymmetricFunctions(p) # needs sage.modules
2284-
sage: TestSuite(L).run() # needs sage.modules
2277+
sage: # needs sage.modules
2278+
sage: s = SymmetricFunctions(QQ).s()
2279+
sage: L = LazySymmetricFunctions(s)
2280+
sage: TestSuite(L).run() # needs lrcalc_python
2281+
sage: p = SymmetricFunctions(GF(5)).p()
2282+
sage: L = LazySymmetricFunctions(p)
2283+
sage: TestSuite(L).run()
22852284
22862285
Reversion will only work when the base ring is a field::
22872286
2288-
sage: s = SymmetricFunctions(ZZ).s() # needs sage.modules
2289-
sage: L = LazySymmetricFunctions(s) # needs sage.modules
2290-
sage: TestSuite(L).run(skip=['_test_revert']) # needs lrcalc_python sage.modules
2291-
2292-
sage: s = SymmetricFunctions(QQ["q"]).s() # needs sage.modules
2293-
sage: L = LazySymmetricFunctions(s) # needs sage.modules
2294-
sage: TestSuite(L).run(skip=['_test_revert']) # needs lrcalc_python sage.modules
2287+
sage: # needs sage.modules
2288+
sage: s = SymmetricFunctions(ZZ).s()
2289+
sage: L = LazySymmetricFunctions(s)
2290+
sage: TestSuite(L).run(skip=['_test_revert']) # needs lrcalc_python
2291+
sage: s = SymmetricFunctions(QQ["q"]).s()
2292+
sage: L = LazySymmetricFunctions(s)
2293+
sage: TestSuite(L).run(skip=['_test_revert']) # needs lrcalc_python
22952294
22962295
Options are remembered across doctests::
22972296
@@ -2399,22 +2398,22 @@ def _element_constructor_(self, x=None, valuation=None, degree=None, constant=No
23992398
24002399
EXAMPLES::
24012400
2402-
sage: # needs sage.modules sage.rings.finite_rings
2401+
sage: # needs sage.modules
24032402
sage: m = SymmetricFunctions(GF(2)).m()
24042403
sage: L = LazySymmetricFunctions(m)
24052404
sage: L(2)
24062405
0
24072406
sage: L(3)
24082407
m[]
24092408
2410-
sage: m = SymmetricFunctions(ZZ).m() # needs sage.modules
2411-
sage: L = LazySymmetricFunctions(m) # needs sage.modules
2412-
sage: f = L(lambda i: m([i]), valuation=5, degree=10); f # needs sage.modules
2409+
sage: # needs sage.modules
2410+
sage: m = SymmetricFunctions(ZZ).m()
2411+
sage: L = LazySymmetricFunctions(m)
2412+
sage: f = L(lambda i: m([i]), valuation=5, degree=10); f
24132413
m[5] + m[6] + m[7] + m[8] + m[9]
2414-
2415-
sage: f.coefficient(6) # needs sage.modules
2414+
sage: f.coefficient(6)
24162415
m[6]
2417-
sage: f[20] # needs sage.modules
2416+
sage: f[20]
24182417
0
24192418
24202419
Alternatively, ``x`` can be a list of elements of the base ring.
@@ -2442,22 +2441,20 @@ def _element_constructor_(self, x=None, valuation=None, degree=None, constant=No
24422441
sage: L(lambda n: 0)
24432442
O^7
24442443
2445-
sage: L(lambda n: tensor([h[n], e([])]) + tensor([h([]), e[n]]), degree=3) # needs sage.modules
2444+
sage: # needs sage.modules
2445+
sage: L(lambda n: tensor([h[n], e([])]) + tensor([h([]), e[n]]), degree=3)
24462446
(2*h[]#e[]) + (h[]#e[1]+h[1]#e[]) + (h[]#e[2]+h[2]#e[])
2447-
2448-
sage: L(lambda n: n)[3]; # needs sage.modules
2447+
sage: L(lambda n: n)[3];
24492448
Traceback (most recent call last):
24502449
...
24512450
ValueError: coefficient 3*h[] # e[] should be an element
24522451
of homogeneous degree 3 but has degree 0
2453-
2454-
sage: L([1, 2, 3]); # needs sage.modules
2452+
sage: L([1, 2, 3]);
24552453
Traceback (most recent call last):
24562454
...
24572455
ValueError: coefficient 2*h[] # e[] should be an element
24582456
of homogeneous degree 1 but has degree 0
2459-
2460-
sage: L(lambda n: n, degree=3); # needs sage.modules
2457+
sage: L(lambda n: n, degree=3);
24612458
Traceback (most recent call last):
24622459
...
24632460
ValueError: coefficient h[] # e[] should be an element

0 commit comments

Comments
 (0)