@@ -1011,9 +1011,9 @@ def is_polhill(int v, int k, int l, int mu):
10111011 sage: from sage. graphs. strongly_regular_db import is_polhill
10121012 sage: t = is_polhill( 1024, 231, 38, 56) ; t
10131013 [<cyfunction is_polhill.<locals>.<lambda> at ...> ]
1014- sage: g = t[0 ]( * t[1: ]) ; g # not tested ( too long)
1014+ sage: g = t[0 ]( * t[1: ]) ; g # not tested ( too long)
10151015 Graph on 1024 vertices
1016- sage: g. is_strongly_regular( parameters=True) # not tested ( too long)
1016+ sage: g. is_strongly_regular( parameters=True) # not tested ( too long)
10171017 ( 1024, 231, 38, 56)
10181018 sage: t = is_polhill( 1024, 264, 56, 72) ; t
10191019 [<cyfunction is_polhill.<locals>.<lambda> at ...> ]
@@ -1496,7 +1496,7 @@ def is_twograph_descendant_of_srg(int v, int k0, int l, int mu):
14961496
14971497 sage: graphs.strongly_regular_graph(279 , 150 , 85 , 75 , existence = True )
14981498 True
1499- sage: graphs.strongly_regular_graph(279 , 150 , 85 , 75 ).is_strongly_regular(parameters = True ) # optional - gap_package_design internet
1499+ sage: graphs.strongly_regular_graph(279 , 150 , 85 , 75 ).is_strongly_regular(parameters = True ) # optional - gap_package_design internet
15001500 (279 , 150 , 85 , 75 )
15011501 """
15021502 cdef int b, k, s
@@ -1642,7 +1642,7 @@ def is_switch_OA_srg(int v, int k, int l, int mu):
16421642
16431643 EXAMPLES::
16441644
1645- sage: graphs.strongly_regular_graph(170 , 78 , 35 , 36 ) # indirect doctest
1645+ sage: graphs.strongly_regular_graph(170 , 78 , 35 , 36 ) # indirect doctest
16461646 Graph on 170 vertices
16471647
16481648 TESTS::
@@ -1909,8 +1909,8 @@ def SRG_100_44_18_20():
19091909 EXAMPLES::
19101910
19111911 sage: from sage.graphs.strongly_regular_db import SRG_100_44_18_20
1912- sage: G = SRG_100_44_18_20() # long time
1913- sage: G.is_strongly_regular(parameters = True ) # long time
1912+ sage: G = SRG_100_44_18_20() # long time
1913+ sage: G.is_strongly_regular(parameters = True ) # long time
19141914 (100 , 44 , 18 , 20 )
19151915 """
19161916 L = ['100', '110', '130', '140', '200', '230', '240', '300', '310', '320',
@@ -1931,8 +1931,8 @@ def SRG_100_45_20_20():
19311931 EXAMPLES::
19321932
19331933 sage: from sage.graphs.strongly_regular_db import SRG_100_45_20_20
1934- sage: G = SRG_100_45_20_20() # long time
1935- sage: G.is_strongly_regular(parameters = True ) # long time
1934+ sage: G = SRG_100_45_20_20() # long time
1935+ sage: G.is_strongly_regular(parameters = True ) # long time
19361936 (100 , 45 , 20 , 20 )
19371937 """
19381938 L = ['120', '140', '200', '210', '201', '401', '411', '321', '002', '012',
@@ -1985,8 +1985,8 @@ def SRG_120_77_52_44():
19851985 EXAMPLES::
19861986
19871987 sage: from sage.graphs.strongly_regular_db import SRG_120_77_52_44
1988- sage: G = SRG_120_77_52_44() # optional - gap_package_design
1989- sage: G.is_strongly_regular(parameters = True ) # optional - gap_package_design
1988+ sage: G = SRG_120_77_52_44() # optional - gap_package_design
1989+ sage: G.is_strongly_regular(parameters = True ) # optional - gap_package_design
19901990 (120 , 77 , 52 , 44 )
19911991 """
19921992 from sage.combinat.designs.block_design import WittDesign
@@ -2290,8 +2290,8 @@ def SRG_280_135_70_60():
22902290 EXAMPLES::
22912291
22922292 sage: from sage.graphs.strongly_regular_db import SRG_280_135_70_60
2293- sage: g= SRG_280_135_70_60() # long time # optional - internet
2294- sage: g.is_strongly_regular(parameters = True ) # long time # optional - internet
2293+ sage: g= SRG_280_135_70_60() # long time, optional - internet
2294+ sage: g.is_strongly_regular(parameters = True ) # long time, optional - internet
22952295 (280 , 135 , 70 , 60 )
22962296 """
22972297 from sage.libs.gap.libgap import libgap
@@ -2398,8 +2398,8 @@ def SRG_416_100_36_20():
23982398 EXAMPLES::
23992399
24002400 sage: from sage.graphs.strongly_regular_db import SRG_416_100_36_20
2401- sage: g = SRG_416_100_36_20() # long time # optional - internet
2402- sage: g.is_strongly_regular(parameters = True ) # long time # optional - internet
2401+ sage: g = SRG_416_100_36_20() # long time, optional - internet
2402+ sage: g.is_strongly_regular(parameters = True ) # long time, optional - internet
24032403 (416 , 100 , 36 , 20 )
24042404 """
24052405 from sage.libs.gap.libgap import libgap
@@ -2422,8 +2422,8 @@ def SRG_560_208_72_80():
24222422 EXAMPLES::
24232423
24242424 sage: from sage.graphs.strongly_regular_db import SRG_560_208_72_80
2425- sage: g = SRG_560_208_72_80() # not tested (~2s)
2426- sage: g.is_strongly_regular(parameters = True ) # not tested (~2s)
2425+ sage: g = SRG_560_208_72_80() # not tested (~2s)
2426+ sage: g.is_strongly_regular(parameters = True ) # not tested (~2s)
24272427 (560 , 208 , 72 , 80 )
24282428 """
24292429 from sage.libs.gap.libgap import libgap
@@ -2662,8 +2662,8 @@ def SRG_1288_792_476_504():
26622662 EXAMPLES::
26632663
26642664 sage: from sage.graphs.strongly_regular_db import SRG_1288_792_476_504
2665- sage: G = SRG_1288_792_476_504() # long time
2666- sage: G.is_strongly_regular(parameters = True ) # long time
2665+ sage: G = SRG_1288_792_476_504() # long time
2666+ sage: G.is_strongly_regular(parameters = True ) # long time
26672667 (1288 , 792 , 476 , 504 )
26682668 """
26692669 from sage.coding.golay_code import GolayCode
@@ -3109,48 +3109,48 @@ def _build_small_srg_database():
31093109
31103110 sage: graphs.strongly_regular_graph(81 , 50 , 31 , 30 )
31113111 complement(two- intersection set in PG(4 ,3 )): Graph on 81 vertices
3112- sage: graphs.strongly_regular_graph(243 , 220 , 199 , 200 ) # long time
3112+ sage: graphs.strongly_regular_graph(243 , 220 , 199 , 200 ) # long time
31133113 two- weight code: [55 , 5 ] linear code over GF(3 ): Graph on 243 vertices
31143114 sage: graphs.strongly_regular_graph(256 , 153 , 92 , 90 )
31153115 complement(two- intersection set in PG(4 ,4 )): Graph on 256 vertices
31163116 sage: graphs.strongly_regular_graph(256 , 170 , 114 , 110 )
31173117 complement(two- intersection set in PG(8 ,2 )): Graph on 256 vertices
31183118 sage: graphs.strongly_regular_graph(256 , 187 , 138 , 132 )
31193119 complement(two- intersection set in PG(8 ,2 )): Graph on 256 vertices
3120- sage: graphs.strongly_regular_graph(512 , 73 , 12 , 10 ) # not tested (too long)
3120+ sage: graphs.strongly_regular_graph(512 , 73 , 12 , 10 ) # not tested (too long)
31213121 two- weight code: [219 , 9 ] linear code over GF(2 ): Graph on 512 vertices
3122- sage: graphs.strongly_regular_graph(512 , 219 , 106 , 84 ) # long time
3122+ sage: graphs.strongly_regular_graph(512 , 219 , 106 , 84 ) # long time
31233123 two- intersection set in PG(9 ,2 ): Graph on 512 vertices
3124- sage: graphs.strongly_regular_graph(512 , 315 , 202 , 180 ) # not tested (too long)
3124+ sage: graphs.strongly_regular_graph(512 , 315 , 202 , 180 ) # not tested (too long)
31253125 two- weight code: [70 , 9 ] linear code over GF(2 ): Graph on 512 vertices
3126- sage: graphs.strongly_regular_graph(625 , 364 , 213 , 210 ) # long time
3126+ sage: graphs.strongly_regular_graph(625 , 364 , 213 , 210 ) # long time
31273127 complement(two- intersection set in PG(4 ,5 )): Graph on 625 vertices
3128- sage: graphs.strongly_regular_graph(625 , 416 , 279 , 272 ) # long time
3128+ sage: graphs.strongly_regular_graph(625 , 416 , 279 , 272 ) # long time
31293129 complement(two- intersection set in PG(4 ,5 )): Graph on 625 vertices
3130- sage: graphs.strongly_regular_graph(625 , 468 , 353 , 342 ) # long time
3130+ sage: graphs.strongly_regular_graph(625 , 468 , 353 , 342 ) # long time
31313131 complement(two- intersection set in PG(4 ,5 )): Graph on 625 vertices
3132- sage: graphs.strongly_regular_graph(729 , 336 , 153 ,156 ) # not tested (too long)
3132+ sage: graphs.strongly_regular_graph(729 , 336 , 153 ,156 ) # not tested (too long)
31333133 two- intersection set in PG(6 ,3 ): Graph on 729 vertices
3134- sage: graphs.strongly_regular_graph(729 , 420 , 243 , 240 ) # not tested (too long)
3134+ sage: graphs.strongly_regular_graph(729 , 420 , 243 , 240 ) # not tested (too long)
31353135 complement(two- intersection set in PG(6 ,3 )): Graph on 729 vertices
3136- sage: graphs.strongly_regular_graph(729 , 448 , 277 , 272 ) # not tested (too long)
3136+ sage: graphs.strongly_regular_graph(729 , 448 , 277 , 272 ) # not tested (too long)
31373137 complement(two- intersection set in PG(6 ,3 )): Graph on 729 vertices
3138- sage: graphs.strongly_regular_graph(729 , 476 , 313 , 306 ) # not tested (too long)
3138+ sage: graphs.strongly_regular_graph(729 , 476 , 313 , 306 ) # not tested (too long)
31393139 complement(two- intersection set in PG(6 ,3 )): Graph on 729 vertices
3140- sage: graphs.strongly_regular_graph(729 , 532 , 391 , 380 ) # not tested (too long)
3140+ sage: graphs.strongly_regular_graph(729 , 532 , 391 , 380 ) # not tested (too long)
31413141 complement(two- intersection set in PG(6 ,3 )): Graph on 729 vertices
3142- sage: graphs.strongly_regular_graph(729 , 560 , 433 , 420 ) # not tested (too long)
3142+ sage: graphs.strongly_regular_graph(729 , 560 , 433 , 420 ) # not tested (too long)
31433143 complement(two- intersection set in PG(6 ,3 )): Graph on 729 vertices
31443144 Graph on 729 vertices
3145- sage: graphs.strongly_regular_graph(729 , 616 , 523 , 506 ) # not tested (too long)
3145+ sage: graphs.strongly_regular_graph(729 , 616 , 523 , 506 ) # not tested (too long)
31463146 complement(two- intersection set in PG(6 ,3 )): Graph on 729 vertices
3147- sage: graphs.strongly_regular_graph(1024 , 363 , 122 , 132 )# not tested (too long)
3147+ sage: graphs.strongly_regular_graph(1024 , 363 , 122 , 132 ) # not tested (too long)
31483148 two- intersection set in PG(5 ,4 ): Graph on 1024 vertices
3149- sage: graphs.strongly_regular_graph(1024 , 396 , 148 , 156 )# not tested (too long)
3149+ sage: graphs.strongly_regular_graph(1024 , 396 , 148 , 156 ) # not tested (too long)
31503150 two- intersection set in PG(5 ,4 ): Graph on 1024 vertices
3151- sage: graphs.strongly_regular_graph(1024 , 429 , 176 , 182 )# not tested (too long)
3151+ sage: graphs.strongly_regular_graph(1024 , 429 , 176 , 182 ) # not tested (too long)
31523152 two- intersection set in PG(5 ,4 ): Graph on 1024 vertices
3153- sage: graphs.strongly_regular_graph(1024 , 825 , 668 , 650 )# not tested (too long)
3153+ sage: graphs.strongly_regular_graph(1024 , 825 , 668 , 650 ) # not tested (too long)
31543154 complement(two- intersection set in PG(10 ,2 )): Graph on 1024 vertices
31553155 """
31563156 from sage.graphs.generators.smallgraphs import McLaughlinGraph
0 commit comments