@@ -1182,16 +1182,24 @@ def _divide_out(self, p):
11821182 pts = Q .division_points (p )
11831183 return (Q , k )
11841184
1185- def set_order (self , value , * , check = True ):
1185+ def set_order (self , value = None , * , multiple = None , check = True ):
11861186 r"""
1187- Set the value of ``self._order`` to ``value``.
1187+ Set the cached order of this point (i.e., the value of
1188+ ``self._order``) to the given ``value``.
11881189
1189- Use this when you know a priori the order of this point to avoid a
1190- potentially expensive order calculation.
1190+ Alternatively, when ``multiple`` is given, this method will
1191+ first run :func:`~sage.groups.generic.order_from_multiple`
1192+ to determine the exact order from the given multiple of the
1193+ point order, then cache the result.
1194+
1195+ Use this when you know a priori the order of this point, or
1196+ a multiple of the order, to avoid a potentially expensive
1197+ order calculation.
11911198
11921199 INPUT:
11931200
11941201 - ``value`` -- positive integer
1202+ - ``multiple`` -- positive integer; mutually exclusive with ``value``
11951203
11961204 OUTPUT: ``None``
11971205
@@ -1206,6 +1214,10 @@ def set_order(self, value, *, check=True):
12061214 sage: G.set_order(2) # optional - sage.rings.finite_rings
12071215 sage: 2*G # optional - sage.rings.finite_rings
12081216 (0 : 1 : 0)
1217+ sage: G = E(0, 6) # optional - sage.rings.finite_rings
1218+ sage: G.set_order(multiple=12) # optional - sage.rings.finite_rings
1219+ sage: G._order # optional - sage.rings.finite_rings
1220+ 3
12091221
12101222 We now give a more interesting case, the NIST-P521 curve. Its
12111223 order is too big to calculate with Sage, and takes a long time
@@ -1227,7 +1239,31 @@ def set_order(self, value, *, check=True):
12271239 (0 : 1 : 0)
12281240 sage: proof.arithmetic(prev_proof_state) # restore state
12291241
1230- It is an error to pass a `value` equal to `0`::
1242+ Using ``.set_order()`` with a ``multiple=`` argument can
1243+ be used to compute a point's order *significantly* faster
1244+ than calling :meth:`order` if the point is already known
1245+ to be `m`-torsion::
1246+
1247+ sage: F.<a> = GF((10007, 23))
1248+ sage: E = EllipticCurve(F, [9,9])
1249+ sage: n = E.order()
1250+ sage: m = 5 * 47 * 139 * 1427 * 2027 * 4831 * 275449 * 29523031
1251+ sage: assert m.divides(n)
1252+ sage: P = n/m * E.lift_x(6747+a)
1253+ sage: assert m * P == 0
1254+ sage: P.set_order(multiple=m) # compute exact order
1255+ sage: factor(m // P.order()) # order is now cached
1256+ 47 * 139
1257+
1258+ The algorithm used internally for this functionality is
1259+ :meth:`~sage.groups.generic.order_from_multiple`.
1260+ Indeed, simply calling :meth:`order` on ``P`` would take
1261+ much longer since factoring ``n`` is fairly expensive::
1262+
1263+ sage: n == m * 6670822796985115651 * 441770032618665681677 * 9289973478285634606114927
1264+ True
1265+
1266+ It is an error to pass a ``value`` equal to `0`::
12311267
12321268 sage: E = EllipticCurve(GF(7), [0, 1]) # This curve has order 12 # optional - sage.rings.finite_rings
12331269 sage: G = E.random_point() # optional - sage.rings.finite_rings
@@ -1251,20 +1287,53 @@ def set_order(self, value, *, check=True):
12511287 ...
12521288 ValueError: Value 11 illegal: 11 * (5 : 0 : 1) is not the identity
12531289
1254- However, ``set_order`` can be fooled, though it's not likely in "real cases
1255- of interest". For instance, the order can be set to a multiple the
1256- actual order::
1290+ However, ``set_order`` can be fooled. For instance, the order
1291+ can be set to a multiple the actual order::
12571292
12581293 sage: E = EllipticCurve(GF(7), [0, 1]) # This curve has order 12 # optional - sage.rings.finite_rings
12591294 sage: G = E(5, 0) # G has order 2 # optional - sage.rings.finite_rings
12601295 sage: G.set_order(8) # optional - sage.rings.finite_rings
12611296 sage: G.order() # optional - sage.rings.finite_rings
12621297 8
12631298
1299+ TESTS:
1300+
1301+ Check that some invalid inputs are caught::
1302+
1303+ sage: E = EllipticCurve(GF(101), [5,5])
1304+ sage: P = E.lift_x(11)
1305+ sage: P.set_order(17, multiple=119)
1306+ Traceback (most recent call last):
1307+ ...
1308+ ValueError: cannot pass both value and multiple
1309+ sage: P.set_order(17)
1310+ sage: P.set_order(multiple=119+1)
1311+ Traceback (most recent call last):
1312+ ...
1313+ ValueError: previously cached order 17 does not divide given multiple 120
1314+ sage: P.set_order(119)
1315+ Traceback (most recent call last):
1316+ ...
1317+ ValueError: value 119 contradicts previously cached order 17
1318+
12641319 AUTHORS:
12651320
12661321 - Mariah Lenox (2011-02-16)
1322+ - Lorenz Panny (2022): add ``multiple=`` option
12671323 """
1324+ if multiple is not None :
1325+ if value is not None :
1326+ raise ValueError ('cannot pass both value and multiple' )
1327+
1328+ if hasattr (self , '_order' ): # already known
1329+ if check and not self ._order .divides (multiple ):
1330+ raise ValueError (f'previously cached order { self ._order } does not divide given multiple { multiple } ' )
1331+ return
1332+
1333+ from sage .groups .generic import order_from_multiple
1334+ value = order_from_multiple (self , multiple , check = check )
1335+ check = False
1336+
12681337 value = Integer (value )
12691338
12701339 if check :
@@ -1277,6 +1346,9 @@ def set_order(self, value, *, check=True):
12771346 raise ValueError ('Value %s illegal: outside max Hasse bound' % value )
12781347 if value * self != E (0 ):
12791348 raise ValueError ('Value %s illegal: %s * %s is not the identity' % (value , value , self ))
1349+ if hasattr (self , '_order' ) and self ._order != value : # already known
1350+ raise ValueError (f'value { value } contradicts previously cached order { self ._order } ' )
1351+
12801352 self ._order = value
12811353
12821354 # ############################# end ################################
0 commit comments