Skip to content

Commit d230886

Browse files
sroy745rasmith
authored andcommitted
[Doc]Add documentation for using EAGLE in vLLM (vllm-project#11417)
Signed-off-by: Sourashis Roy <[email protected]>
1 parent 1558c81 commit d230886

File tree

1 file changed

+66
-0
lines changed

1 file changed

+66
-0
lines changed

docs/source/features/spec_decode.md

Lines changed: 66 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -159,6 +159,72 @@ A variety of speculative models of this type are available on HF hub:
159159
- [granite-7b-instruct-accelerator](https://huggingface.co/ibm-granite/granite-7b-instruct-accelerator)
160160
- [granite-20b-code-instruct-accelerator](https://huggingface.co/ibm-granite/granite-20b-code-instruct-accelerator)
161161

162+
## Speculating using EAGLE based draft models
163+
164+
The following code configures vLLM to use speculative decoding where proposals are generated by
165+
an [EAGLE (Extrapolation Algorithm for Greater Language-model Efficiency)](https://arxiv.org/pdf/2401.15077) based draft model.
166+
167+
```python
168+
from vllm import LLM, SamplingParams
169+
170+
prompts = [
171+
"The future of AI is",
172+
]
173+
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
174+
175+
llm = LLM(
176+
model="meta-llama/Meta-Llama-3-8B-Instruct",
177+
tensor_parallel_size=4,
178+
speculative_model="path/to/modified/eagle/model",
179+
speculative_draft_tensor_parallel_size=1,
180+
)
181+
182+
outputs = llm.generate(prompts, sampling_params)
183+
184+
for output in outputs:
185+
prompt = output.prompt
186+
generated_text = output.outputs[0].text
187+
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
188+
189+
```
190+
191+
A few important things to consider when using the EAGLE based draft models:
192+
193+
1. The EAGLE draft models available in the [HF repository for EAGLE models](https://huggingface.co/yuhuili) cannot be
194+
used directly with vLLM due to differences in the expected layer names and model definition.
195+
To use these models with vLLM, use the [following script](https://gist.github.com/abhigoyal1997/1e7a4109ccb7704fbc67f625e86b2d6d)
196+
to convert them. Note that this script does not modify the model's weights.
197+
198+
In the above example, use the script to first convert
199+
the [yuhuili/EAGLE-LLaMA3-Instruct-8B](https://huggingface.co/yuhuili/EAGLE-LLaMA3-Instruct-8B) model
200+
and then use the converted checkpoint as the draft model in vLLM.
201+
202+
2. The EAGLE based draft models need to be run without tensor parallelism
203+
(i.e. speculative_draft_tensor_parallel_size is set to 1), although
204+
it is possible to run the main model using tensor parallelism (see example above).
205+
206+
3. When using EAGLE-based speculators with vLLM, the observed speedup is lower than what is
207+
reported in the reference implementation [here](https://github.com/SafeAILab/EAGLE). This issue is under
208+
investigation and tracked here: [https://github.com/vllm-project/vllm/issues/9565](https://github.com/vllm-project/vllm/issues/9565).
209+
210+
211+
A variety of EAGLE draft models are available on the Hugging Face hub:
212+
213+
| Base Model | EAGLE on Hugging Face | # EAGLE Parameters |
214+
|---------------------------------------------------------------------|-------------------------------------------|--------------------|
215+
| Vicuna-7B-v1.3 | yuhuili/EAGLE-Vicuna-7B-v1.3 | 0.24B |
216+
| Vicuna-13B-v1.3 | yuhuili/EAGLE-Vicuna-13B-v1.3 | 0.37B |
217+
| Vicuna-33B-v1.3 | yuhuili/EAGLE-Vicuna-33B-v1.3 | 0.56B |
218+
| LLaMA2-Chat 7B | yuhuili/EAGLE-llama2-chat-7B | 0.24B |
219+
| LLaMA2-Chat 13B | yuhuili/EAGLE-llama2-chat-13B | 0.37B |
220+
| LLaMA2-Chat 70B | yuhuili/EAGLE-llama2-chat-70B | 0.99B |
221+
| Mixtral-8x7B-Instruct-v0.1 | yuhuili/EAGLE-mixtral-instruct-8x7B | 0.28B |
222+
| LLaMA3-Instruct 8B | yuhuili/EAGLE-LLaMA3-Instruct-8B | 0.25B |
223+
| LLaMA3-Instruct 70B | yuhuili/EAGLE-LLaMA3-Instruct-70B | 0.99B |
224+
| Qwen2-7B-Instruct | yuhuili/EAGLE-Qwen2-7B-Instruct | 0.26B |
225+
| Qwen2-72B-Instruct | yuhuili/EAGLE-Qwen2-72B-Instruct | 1.05B |
226+
227+
162228
## Lossless guarantees of Speculative Decoding
163229

164230
In vLLM, speculative decoding aims to enhance inference efficiency while maintaining accuracy. This section addresses the lossless guarantees of

0 commit comments

Comments
 (0)