Skip to content

add random apply transform base class #5639

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Mar 18, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 3 additions & 7 deletions torchvision/prototype/transforms/_augment.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,18 +7,19 @@
from torchvision.prototype import features
from torchvision.prototype.transforms import Transform, functional as F

from ._transform import _RandomApplyTransform
from ._utils import query_image, get_image_dimensions, has_all, has_any, is_simple_tensor


class RandomErasing(Transform):
class RandomErasing(_RandomApplyTransform):
def __init__(
self,
p: float = 0.5,
scale: Tuple[float, float] = (0.02, 0.33),
ratio: Tuple[float, float] = (0.3, 3.3),
value: float = 0,
):
super().__init__()
super().__init__(p=p)
if not isinstance(value, (numbers.Number, str, tuple, list)):
raise TypeError("Argument value should be either a number or str or a sequence")
if isinstance(value, str) and value != "random":
Expand All @@ -31,9 +32,6 @@ def __init__(
warnings.warn("Scale and ratio should be of kind (min, max)")
if scale[0] < 0 or scale[1] > 1:
raise ValueError("Scale should be between 0 and 1")
if p < 0 or p > 1:
raise ValueError("Random erasing probability should be between 0 and 1")
self.p = p
self.scale = scale
self.ratio = ratio
self.value = value
Expand Down Expand Up @@ -99,8 +97,6 @@ def forward(self, *inputs: Any) -> Any:
sample = inputs if len(inputs) > 1 else inputs[0]
if has_any(sample, features.BoundingBox, features.SegmentationMask):
raise TypeError(f"BoundingBox'es and SegmentationMask's are not supported by {type(self).__name__}()")
elif torch.rand(1) >= self.p:
return sample

return super().forward(sample)

Expand Down
18 changes: 7 additions & 11 deletions torchvision/prototype/transforms/_container.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,9 @@
from typing import Any, Optional, List
from typing import Any, Optional, List, Dict

import torch
from torchvision.prototype.transforms import Transform

from ._transform import Transform
from ._transform import _RandomApplyTransform


class Compose(Transform):
Expand All @@ -19,18 +20,13 @@ def forward(self, *inputs: Any) -> Any:
return sample


class RandomApply(Transform):
class RandomApply(_RandomApplyTransform):
def __init__(self, transform: Transform, *, p: float = 0.5) -> None:
super().__init__()
super().__init__(p=p)
self.transform = transform
self.p = p

def forward(self, *inputs: Any) -> Any:
sample = inputs if len(inputs) > 1 else inputs[0]
if float(torch.rand(())) < self.p:
return sample

return self.transform(sample)
def _transform(self, input: Any, params: Dict[str, Any]) -> Any:
return self.transform(input)

def extra_repr(self) -> str:
return f"p={self.p}"
Expand Down
40 changes: 5 additions & 35 deletions torchvision/prototype/transforms/_geometry.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,21 +12,11 @@
from torchvision.transforms.transforms import _setup_size, _interpolation_modes_from_int
from typing_extensions import Literal

from ._transform import _RandomApplyTransform
from ._utils import query_image, get_image_dimensions, has_any, is_simple_tensor


class RandomHorizontalFlip(Transform):
def __init__(self, p: float = 0.5) -> None:
super().__init__()
self.p = p

def forward(self, *inputs: Any) -> Any:
sample = inputs if len(inputs) > 1 else inputs[0]
if torch.rand(1) >= self.p:
return sample

return super().forward(sample)

class RandomHorizontalFlip(_RandomApplyTransform):
def _transform(self, input: Any, params: Dict[str, Any]) -> Any:
if isinstance(input, features.Image):
output = F.horizontal_flip_image_tensor(input)
Expand All @@ -45,18 +35,7 @@ def _transform(self, input: Any, params: Dict[str, Any]) -> Any:
return input


class RandomVerticalFlip(Transform):
def __init__(self, p: float = 0.5) -> None:
super().__init__()
self.p = p

def forward(self, *inputs: Any) -> Any:
sample = inputs if len(inputs) > 1 else inputs[0]
if torch.rand(1) > self.p:
return sample

return super().forward(sample)

class RandomVerticalFlip(_RandomApplyTransform):
def _transform(self, input: Any, params: Dict[str, Any]) -> Any:
if isinstance(input, features.Image):
output = F.vertical_flip_image_tensor(input)
Expand Down Expand Up @@ -371,11 +350,11 @@ def _transform(self, input: Any, params: Dict[str, Any]) -> Any:
return input


class RandomZoomOut(Transform):
class RandomZoomOut(_RandomApplyTransform):
def __init__(
self, fill: Union[float, Sequence[float]] = 0.0, side_range: Tuple[float, float] = (1.0, 4.0), p: float = 0.5
) -> None:
super().__init__()
super().__init__(p=p)

if fill is None:
fill = 0.0
Expand All @@ -385,8 +364,6 @@ def __init__(
if side_range[0] < 1.0 or side_range[0] > side_range[1]:
raise ValueError(f"Invalid canvas side range provided {side_range}.")

self.p = p

def _get_params(self, sample: Any) -> Dict[str, Any]:
image = query_image(sample)
orig_c, orig_h, orig_w = get_image_dimensions(image)
Expand All @@ -411,10 +388,3 @@ def _get_params(self, sample: Any) -> Dict[str, Any]:
def _transform(self, input: Any, params: Dict[str, Any]) -> Any:
transform = Pad(**params, padding_mode="constant")
return transform(input)

def forward(self, *inputs: Any) -> Any:
sample = inputs if len(inputs) > 1 else inputs[0]
if torch.rand(1) >= self.p:
return sample

return super().forward(sample)
18 changes: 18 additions & 0 deletions torchvision/prototype/transforms/_transform.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@
import functools
from typing import Any, Dict

import torch
from torch import nn
from torchvision.prototype.utils._internal import apply_recursively
from torchvision.utils import _log_api_usage_once
Expand Down Expand Up @@ -34,3 +35,20 @@ def extra_repr(self) -> str:
extra.append(f"{name}={value}")

return ", ".join(extra)


class _RandomApplyTransform(Transform):
def __init__(self, *, p: float = 0.5) -> None:
if not (0.0 <= p <= 1.0):
raise ValueError("`p` should be a floating point value in the interval [0.0, 1.0].")

super().__init__()
self.p = p

def forward(self, *inputs: Any) -> Any:
sample = inputs if len(inputs) > 1 else inputs[0]

if torch.rand(1) >= self.p:
return sample

return super().forward(sample)