Skip to content

fix vanilla tensor image detection #5518

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Mar 5, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions torchvision/prototype/transforms/_augment.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@
from torchvision.prototype import features
from torchvision.prototype.transforms import Transform, functional as F

from ._utils import query_image, get_image_dimensions, has_all, has_any
from ._utils import query_image, get_image_dimensions, has_all, has_any, is_simple_tensor


class RandomErasing(Transform):
Expand Down Expand Up @@ -90,7 +90,7 @@ def _transform(self, input: Any, params: Dict[str, Any]) -> Any:
if isinstance(input, features.Image):
output = F.erase_image_tensor(input, **params)
return features.Image.new_like(input, output)
elif isinstance(input, torch.Tensor):
elif is_simple_tensor(input):
return F.erase_image_tensor(input, **params)
else:
return input
Expand Down
4 changes: 2 additions & 2 deletions torchvision/prototype/transforms/_auto_augment.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@
from torchvision.prototype.utils._internal import query_recursively
from torchvision.transforms.functional import pil_to_tensor, to_pil_image

from ._utils import get_image_dimensions
from ._utils import get_image_dimensions, is_simple_tensor

K = TypeVar("K")
V = TypeVar("V")
Expand Down Expand Up @@ -89,7 +89,7 @@ def _dispatch_image_kernels(
if isinstance(input, features.Image):
output = image_tensor_kernel(input, *args, **kwargs)
return features.Image.new_like(input, output)
elif isinstance(input, torch.Tensor):
elif is_simple_tensor(input):
return image_tensor_kernel(input, *args, **kwargs)
else: # isinstance(input, PIL.Image.Image):
return image_pil_kernel(input, *args, **kwargs)
Expand Down
10 changes: 5 additions & 5 deletions torchvision/prototype/transforms/_geometry.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@
from torchvision.prototype.transforms import Transform, InterpolationMode, functional as F
from torchvision.transforms.transforms import _setup_size, _interpolation_modes_from_int

from ._utils import query_image, get_image_dimensions, has_any
from ._utils import query_image, get_image_dimensions, has_any, is_simple_tensor


class HorizontalFlip(Transform):
Expand All @@ -21,7 +21,7 @@ def _transform(self, input: Any, params: Dict[str, Any]) -> Any:
return features.BoundingBox.new_like(input, output)
elif isinstance(input, PIL.Image.Image):
return F.horizontal_flip_image_pil(input)
elif isinstance(input, torch.Tensor):
elif is_simple_tensor(input):
return F.horizontal_flip_image_tensor(input)
else:
return input
Expand Down Expand Up @@ -49,7 +49,7 @@ def _transform(self, input: Any, params: Dict[str, Any]) -> Any:
return features.BoundingBox.new_like(input, output, image_size=cast(Tuple[int, int], tuple(self.size)))
elif isinstance(input, PIL.Image.Image):
return F.resize_image_pil(input, self.size, interpolation=self.interpolation)
elif isinstance(input, torch.Tensor):
elif is_simple_tensor(input):
return F.resize_image_tensor(input, self.size, interpolation=self.interpolation)
else:
return input
Expand All @@ -64,7 +64,7 @@ def _transform(self, input: Any, params: Dict[str, Any]) -> Any:
if isinstance(input, features.Image):
output = F.center_crop_image_tensor(input, self.output_size)
return features.Image.new_like(input, output)
elif isinstance(input, torch.Tensor):
elif is_simple_tensor(input):
return F.center_crop_image_tensor(input, self.output_size)
elif isinstance(input, PIL.Image.Image):
return F.center_crop_image_pil(input, self.output_size)
Expand Down Expand Up @@ -156,7 +156,7 @@ def _transform(self, input: Any, params: Dict[str, Any]) -> Any:
input, **params, size=list(self.size), interpolation=self.interpolation
)
return features.Image.new_like(input, output)
elif isinstance(input, torch.Tensor):
elif is_simple_tensor(input):
return F.resized_crop_image_tensor(input, **params, size=list(self.size), interpolation=self.interpolation)
elif isinstance(input, PIL.Image.Image):
return F.resized_crop_image_pil(input, **params, size=list(self.size), interpolation=self.interpolation)
Expand Down
10 changes: 7 additions & 3 deletions torchvision/prototype/transforms/_meta.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,8 @@
from torchvision.prototype.transforms import Transform, functional as F
from torchvision.transforms.functional import convert_image_dtype

from ._utils import is_simple_tensor


class ConvertBoundingBoxFormat(Transform):
def __init__(self, format: Union[str, features.BoundingBoxFormat]) -> None:
Expand All @@ -15,7 +17,7 @@ def __init__(self, format: Union[str, features.BoundingBoxFormat]) -> None:
self.format = format

def _transform(self, input: Any, params: Dict[str, Any]) -> Any:
if type(input) is features.BoundingBox:
if isinstance(input, features.BoundingBox):
output = F.convert_bounding_box_format(input, old_format=input.format, new_format=params["format"])
return features.BoundingBox.new_like(input, output, format=params["format"])
else:
Expand All @@ -28,9 +30,11 @@ def __init__(self, dtype: torch.dtype = torch.float32) -> None:
self.dtype = dtype

def _transform(self, input: Any, params: Dict[str, Any]) -> Any:
if type(input) is features.Image:
if isinstance(input, features.Image):
output = convert_image_dtype(input, dtype=self.dtype)
return features.Image.new_like(input, output, dtype=self.dtype)
elif is_simple_tensor(input):
return convert_image_dtype(input, dtype=self.dtype)
else:
return input

Expand All @@ -57,7 +61,7 @@ def _transform(self, input: Any, params: Dict[str, Any]) -> Any:
input, old_color_space=input.color_space, new_color_space=self.color_space
)
return features.Image.new_like(input, output, color_space=self.color_space)
elif isinstance(input, torch.Tensor):
elif is_simple_tensor(input):
if self.old_color_space is None:
raise RuntimeError(
f"In order to convert vanilla tensor images, `{type(self).__name__}(...)` "
Expand Down
4 changes: 2 additions & 2 deletions torchvision/prototype/transforms/_type_conversion.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@

class DecodeImage(Transform):
def _transform(self, input: Any, params: Dict[str, Any]) -> Any:
if type(input) is features.EncodedImage:
if isinstance(input, features.EncodedImage):
output = F.decode_image_with_pil(input)
return features.Image(output)
else:
Expand All @@ -19,7 +19,7 @@ def __init__(self, num_categories: int = -1):
self.num_categories = num_categories

def _transform(self, input: Any, params: Dict[str, Any]) -> Any:
if type(input) is features.Label:
if isinstance(input, features.Label):
num_categories = self.num_categories
if num_categories == -1 and input.categories is not None:
num_categories = len(input.categories)
Expand Down
4 changes: 4 additions & 0 deletions torchvision/prototype/transforms/_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -46,3 +46,7 @@ def has_any(sample: Any, *types: Type) -> bool:

def has_all(sample: Any, *types: Type) -> bool:
return not bool(set(types) - set(_extract_types(sample)))


def is_simple_tensor(input: Any) -> bool:
return isinstance(input, torch.Tensor) and not isinstance(input, features._Feature)