Skip to content

Adding Weights classes for Resnet classification models #4655

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 19 commits into from
Oct 20, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
54 changes: 54 additions & 0 deletions test/test_prototype_models.py
Original file line number Diff line number Diff line change
@@ -1,2 +1,56 @@
import os

import pytest
import torch
from common_utils import set_rng_seed, cpu_and_gpu
from test_models import _assert_expected, _model_params
from torchvision import models as original_models
from torchvision.prototype import models


def get_available_classification_models():
return [k for k, v in models.__dict__.items() if callable(v) and k[0].lower() == k[0] and k[0] != "_"]


@pytest.mark.parametrize("model_name", get_available_classification_models())
@pytest.mark.parametrize("dev", cpu_and_gpu())
@pytest.mark.skipif(os.getenv("PYTORCH_TEST_WITH_PROTOTYPE", "0") == "0", reason="Prototype code tests are disabled")
def test_classification_model(model_name, dev):
set_rng_seed(0)
defaults = {
"num_classes": 50,
"input_shape": (1, 3, 224, 224),
}
kwargs = {**defaults, **_model_params.get(model_name, {})}
input_shape = kwargs.pop("input_shape")
model = models.__dict__[model_name](**kwargs)
model.eval().to(device=dev)
x = torch.rand(input_shape).to(device=dev)
out = model(x)
_assert_expected(out.cpu(), model_name, prec=0.1)
assert out.shape[-1] == 50


@pytest.mark.parametrize("model_name", get_available_classification_models())
@pytest.mark.parametrize("dev", cpu_and_gpu())
@pytest.mark.skipif(os.getenv("PYTORCH_TEST_WITH_PROTOTYPE", "0") == "0", reason="Prototype code tests are disabled")
def test_old_vs_new_classification_factory(model_name, dev):
defaults = {
"pretrained": True,
"input_shape": (1, 3, 224, 224),
}
kwargs = {**defaults, **_model_params.get(model_name, {})}
input_shape = kwargs.pop("input_shape")
model_old = original_models.__dict__[model_name](**kwargs)
model_old.eval().to(device=dev)
x = torch.rand(input_shape).to(device=dev)
out_old = model_old(x)
# compare with new model builder parameterized in the old fashion way
model_new = models.__dict__[model_name](**kwargs)
model_new.eval().to(device=dev)
out_new = model_new(x)
torch.testing.assert_close(out_new, out_old, rtol=0.0, atol=0.0, check_dtype=False)


def test_smoke():
import torchvision.prototype.models # noqa: F401
208 changes: 207 additions & 1 deletion torchvision/prototype/models/resnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,27 @@
from ._meta import _IMAGENET_CATEGORIES


__all__ = ["ResNet", "ResNet50Weights", "resnet50"]
__all__ = [
"ResNet",
"ResNet18Weights",
"ResNet34Weights",
"ResNet50Weights",
"ResNet101Weights",
"ResNet152Weights",
"ResNeXt50_32x4dWeights",
"ResNeXt101_32x8dWeights",
"WideResNet50_2Weights",
"WideResNet101_2Weights",
"resnet18",
"resnet34",
"resnet50",
"resnet101",
"resnet152",
"resnext50_32x4d",
"resnext101_32x8d",
"wide_resnet50_2",
"wide_resnet101_2",
]


def _resnet(
Expand All @@ -35,6 +55,32 @@ def _resnet(
}


class ResNet18Weights(Weights):
ImageNet1K_RefV1 = WeightEntry(
url="https://download.pytorch.org/models/resnet18-f37072fd.pth",
transforms=partial(ImageNetEval, crop_size=224),
meta={
**_common_meta,
"recipe": "",
"acc@1": 69.758,
"acc@5": 89.078,
},
)


class ResNet34Weights(Weights):
ImageNet1K_RefV1 = WeightEntry(
url="https://download.pytorch.org/models/resnet34-b627a593.pth",
transforms=partial(ImageNetEval, crop_size=224),
meta={
**_common_meta,
"recipe": "",
"acc@1": 73.314,
"acc@5": 91.420,
},
)


class ResNet50Weights(Weights):
ImageNet1K_RefV1 = WeightEntry(
url="https://download.pytorch.org/models/resnet50-0676ba61.pth",
Expand All @@ -58,10 +104,170 @@ class ResNet50Weights(Weights):
)


class ResNet101Weights(Weights):
ImageNet1K_RefV1 = WeightEntry(
url="https://download.pytorch.org/models/resnet101-63fe2227.pth",
transforms=partial(ImageNetEval, crop_size=224),
meta={
**_common_meta,
"recipe": "",
"acc@1": 77.374,
"acc@5": 93.546,
},
)


class ResNet152Weights(Weights):
ImageNet1K_RefV1 = WeightEntry(
url="https://download.pytorch.org/models/resnet152-394f9c45.pth",
transforms=partial(ImageNetEval, crop_size=224),
meta={
**_common_meta,
"recipe": "",
"acc@1": 78.312,
"acc@5": 94.046,
},
)


class ResNeXt50_32x4dWeights(Weights):
ImageNet1K_RefV1 = WeightEntry(
url="https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth",
transforms=partial(ImageNetEval, crop_size=224),
meta={
**_common_meta,
"recipe": "",
"acc@1": 77.618,
"acc@5": 93.698,
},
)


class ResNeXt101_32x8dWeights(Weights):
ImageNet1K_RefV1 = WeightEntry(
url="https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth",
transforms=partial(ImageNetEval, crop_size=224),
meta={
**_common_meta,
"recipe": "",
"acc@1": 79.312,
"acc@5": 94.526,
},
)


class WideResNet50_2Weights(Weights):
ImageNet1K_RefV1 = WeightEntry(
url="https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth",
transforms=partial(ImageNetEval, crop_size=224),
meta={
**_common_meta,
"recipe": "",
"acc@1": 78.468,
"acc@5": 94.086,
},
)


class WideResNet101_2Weights(Weights):
ImageNet1K_RefV1 = WeightEntry(
url="https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth",
transforms=partial(ImageNetEval, crop_size=224),
meta={
**_common_meta,
"recipe": "",
"acc@1": 78.848,
"acc@5": 94.284,
},
)


def resnet18(weights: Optional[ResNet18Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
if "pretrained" in kwargs:
warnings.warn("The argument pretrained is deprecated, please use weights instead.")
weights = ResNet18Weights.ImageNet1K_RefV1 if kwargs.pop("pretrained") else None

weights = ResNet18Weights.verify(weights)

return _resnet(BasicBlock, [2, 2, 2, 2], weights, progress, **kwargs)


def resnet34(weights: Optional[ResNet34Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
if "pretrained" in kwargs:
warnings.warn("The argument pretrained is deprecated, please use weights instead.")
weights = ResNet34Weights.ImageNet1K_RefV1 if kwargs.pop("pretrained") else None

weights = ResNet34Weights.verify(weights)

return _resnet(BasicBlock, [3, 4, 6, 3], weights, progress, **kwargs)


def resnet50(weights: Optional[ResNet50Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
if "pretrained" in kwargs:
warnings.warn("The argument pretrained is deprecated, please use weights instead.")
weights = ResNet50Weights.ImageNet1K_RefV1 if kwargs.pop("pretrained") else None
weights = ResNet50Weights.verify(weights)

return _resnet(Bottleneck, [3, 4, 6, 3], weights, progress, **kwargs)


def resnet101(weights: Optional[ResNet101Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
if "pretrained" in kwargs:
warnings.warn("The argument pretrained is deprecated, please use weights instead.")
weights = ResNet101Weights.ImageNet1K_RefV1 if kwargs.pop("pretrained") else None

weights = ResNet101Weights.verify(weights)

return _resnet(Bottleneck, [3, 4, 23, 3], weights, progress, **kwargs)


def resnet152(weights: Optional[ResNet152Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
if "pretrained" in kwargs:
warnings.warn("The argument pretrained is deprecated, please use weights instead.")
weights = ResNet152Weights.ImageNet1K_RefV1 if kwargs.pop("pretrained") else None

weights = ResNet152Weights.verify(weights)

return _resnet(Bottleneck, [3, 8, 36, 3], weights, progress, **kwargs)


def resnext50_32x4d(weights: Optional[ResNeXt50_32x4dWeights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
if "pretrained" in kwargs:
warnings.warn("The argument pretrained is deprecated, please use weights instead.")
weights = ResNeXt50_32x4dWeights.ImageNet1K_RefV1 if kwargs.pop("pretrained") else None

weights = ResNeXt50_32x4dWeights.verify(weights)
kwargs["groups"] = 32
kwargs["width_per_group"] = 4
return _resnet(Bottleneck, [3, 4, 6, 3], weights, progress, **kwargs)


def resnext101_32x8d(weights: Optional[ResNeXt101_32x8dWeights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
if "pretrained" in kwargs:
warnings.warn("The argument pretrained is deprecated, please use weights instead.")
weights = ResNeXt101_32x8dWeights.ImageNet1K_RefV1 if kwargs.pop("pretrained") else None

weights = ResNeXt101_32x8dWeights.verify(weights)
kwargs["groups"] = 32
kwargs["width_per_group"] = 8
return _resnet(Bottleneck, [3, 4, 23, 3], weights, progress, **kwargs)


def wide_resnet50_2(weights: Optional[WideResNet50_2Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
if "pretrained" in kwargs:
warnings.warn("The argument pretrained is deprecated, please use weights instead.")
weights = WideResNet50_2Weights.ImageNet1K_RefV1 if kwargs.pop("pretrained") else None

weights = WideResNet50_2Weights.verify(weights)
kwargs["width_per_group"] = 64 * 2
return _resnet(Bottleneck, [3, 4, 6, 3], weights, progress, **kwargs)


def wide_resnet101_2(weights: Optional[WideResNet101_2Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
if "pretrained" in kwargs:
warnings.warn("The argument pretrained is deprecated, please use weights instead.")
weights = WideResNet101_2Weights.ImageNet1K_RefV1 if kwargs.pop("pretrained") else None

weights = WideResNet101_2Weights.verify(weights)
kwargs["width_per_group"] = 64 * 2
return _resnet(Bottleneck, [3, 4, 23, 3], weights, progress, **kwargs)