Skip to content

Add FiveCrop and TenCrop transforms #261

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 10 commits into from
Sep 26, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
60 changes: 60 additions & 0 deletions test/test_transforms.py
Original file line number Diff line number Diff line change
Expand Up @@ -61,6 +61,66 @@ def test_crop(self):
assert sum2 > sum1, "height: " + str(height) + " width: " \
+ str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth)

def test_five_crop(self):
to_pil_image = transforms.ToPILImage()
h = random.randint(5, 25)
w = random.randint(5, 25)
for single_dim in [True, False]:
crop_h = random.randint(1, h)
crop_w = random.randint(1, w)
if single_dim:
crop_h = min(crop_h, crop_w)
crop_w = crop_h
transform = transforms.FiveCrop(crop_h)
else:
transform = transforms.FiveCrop((crop_h, crop_w))

img = torch.FloatTensor(3, h, w).uniform_()
results = transform(to_pil_image(img))

assert len(results) == 5
for crop in results:
assert crop.size == (crop_w, crop_h)

to_pil_image = transforms.ToPILImage()
tl = to_pil_image(img[:, 0:crop_h, 0:crop_w])
tr = to_pil_image(img[:, 0:crop_h, w - crop_w:])
bl = to_pil_image(img[:, h - crop_h:, 0:crop_w])
br = to_pil_image(img[:, h - crop_h:, w - crop_w:])
center = transforms.CenterCrop((crop_h, crop_w))(to_pil_image(img))
expected_output = (tl, tr, bl, br, center)
assert results == expected_output

def test_ten_crop(self):
to_pil_image = transforms.ToPILImage()
h = random.randint(5, 25)
w = random.randint(5, 25)
for should_vflip in [True, False]:
for single_dim in [True, False]:
crop_h = random.randint(1, h)
crop_w = random.randint(1, w)
if single_dim:
crop_h = min(crop_h, crop_w)
crop_w = crop_h
transform = transforms.TenCrop(crop_h, vflip=should_vflip)
five_crop = transforms.FiveCrop(crop_h)
else:
transform = transforms.TenCrop((crop_h, crop_w), vflip=should_vflip)
five_crop = transforms.FiveCrop((crop_h, crop_w))

img = to_pil_image(torch.FloatTensor(3, h, w).uniform_())
results = transform(img)
expected_output = five_crop(img)
if should_vflip:
vflipped_img = img.transpose(Image.FLIP_TOP_BOTTOM)
expected_output += five_crop(vflipped_img)
else:
hflipped_img = img.transpose(Image.FLIP_LEFT_RIGHT)
expected_output += five_crop(hflipped_img)

assert len(results) == 10
assert expected_output == results

def test_scale(self):
height = random.randint(24, 32) * 2
width = random.randint(24, 32) * 2
Expand Down
69 changes: 69 additions & 0 deletions torchvision/transforms.py
Original file line number Diff line number Diff line change
Expand Up @@ -638,3 +638,72 @@ def __call__(self, img):
"""
i, j, h, w = self.get_params(img)
return scaled_crop(img, i, j, h, w, self.size, self.interpolation)


class FiveCrop(object):
"""Crop the given PIL.Image into four corners and the central crop.abs

Note: this transform returns a tuple of images and there may be a mismatch in the number of
inputs and targets your `Dataset` returns.

Args:
size (sequence or int): Desired output size of the crop. If size is an
int instead of sequence like (h, w), a square crop (size, size) is
made.
"""

def __init__(self, size):
self.size = size
if isinstance(size, numbers.Number):
self.size = (int(size), int(size))
else:
assert len(size) == 2, "Please provide only two dimensions (h, w) for size."
self.size = size

def __call__(self, img):
w, h = img.size
crop_h, crop_w = self.size
if crop_w > w or crop_h > h:
raise ValueError("Requested crop size {} is bigger than input size {}".format(self.size,
(h, w)))
tl = img.crop((0, 0, crop_w, crop_h))
tr = img.crop((w - crop_w, 0, w, crop_h))
bl = img.crop((0, h - crop_h, crop_w, h))
br = img.crop((w - crop_w, h - crop_h, w, h))
center = CenterCrop((crop_h, crop_w))(img)
return (tl, tr, bl, br, center)


class TenCrop(object):
"""Crop the given PIL.Image into four corners and the central crop plus the
flipped version of these (horizontal flipping is used by default)

Note: this transform returns a tuple of images and there may be a mismatch in the number of
inputs and targets your `Dataset` returns.

Args:
size (sequence or int): Desired output size of the crop. If size is an
int instead of sequence like (h, w), a square crop (size, size) is
made.
vflip bool: Use vertical flipping instead of horizontal
"""

def __init__(self, size, vflip=False):
self.size = size
if isinstance(size, numbers.Number):
self.size = (int(size), int(size))
else:
assert len(size) == 2, "Please provide only two dimensions (h, w) for size."
self.size = size
self.vflip = vflip

def __call__(self, img):
five_crop = FiveCrop(self.size)
first_five = five_crop(img)
if self.vflip:
img = img.transpose(Image.FLIP_TOP_BOTTOM)
else:
img = img.transpose(Image.FLIP_LEFT_RIGHT)

second_five = five_crop(img)
return first_five + second_five