Closed
Description
Related tracker issue: #5754
Functional transforms for bboxes
The idea is to implement the following low-level functional transforms for bounding boxes:
https://github.com/pytorch/vision/blob/main/torchvision/prototype/transforms/functional/_geometry.py
- affine_bounding_box (@vfdev-5) [proto] Added functional
affine_bounding_box
op #5597 - rotate_bounding_box (@vfdev-5) [proto] Added functional rotate_bounding_box op #5638
- perspective_bounding_box (@vfdev-5) [proto] Added functional
perspective_bounding_box/segmentation_mask
ops #5888 - center_crop_bounding_box (@vfdev-5) [proto] Added
center_crop_bounding_box
functional op #5972 - crop_bounding_box (@vfdev-5) [proto] Added functional
crop_bounding_box
op #5781 - resized_crop_bounding_box (@vfdev-5) [proto] Added
resized_crop_bounding_box
op #5853 - pad_bounding_box (@pmeier) port RandomZoomOut from detection references to prototype transforms #5551, add tests for F.pad_bounding_box #6038
- vertical_flip_bounding_box refactor: port RandomVerticalFlip to prototype API (#5524) #5633
How to test the implementation ?
Put tests into test/test_prototype_transforms_functional.py
:
- correctness test
- eager vs scripted
- scriptable
- check on cpu and cuda