@@ -199,6 +199,8 @@ architectures:
199
199
VGG-19 (with and without batch normalization)
200
200
- `ResNet <https://arxiv.org/abs/1512.03385 >`__: ResNet-18, ResNet-34,
201
201
ResNet-50, ResNet-101, ResNet-152
202
+ - `SqueezeNet <https://arxiv.org/abs/1602.07360 >`__: SqueezeNet 1.0, and
203
+ SqueezeNet 1.1
202
204
203
205
You can construct a model with random weights by calling its
204
206
constructor:
@@ -208,16 +210,19 @@ constructor:
208
210
import torchvision.models as models
209
211
resnet18 = models.resnet18()
210
212
alexnet = models.alexnet()
213
+ vgg16 = model.vgg16()
214
+ squeezenet = models.squeezenet1_0()
211
215
212
- We provide pre-trained models for the ResNet variants and AlexNet, using
213
- the PyTorch `model zoo <http://pytorch.org/docs/model_zoo.html >`__.
216
+ We provide pre-trained models for the ResNet variants, SqueezeNet 1.0 and 1.1,
217
+ and AlexNet, using the PyTorch `model zoo <http://pytorch.org/docs/model_zoo.html >`__.
214
218
These can be constructed by passing ``pretrained=True ``:
215
219
216
220
.. code :: python
217
221
218
222
import torchvision.models as models
219
223
resnet18 = models.resnet18(pretrained = True )
220
224
alexnet = models.alexnet(pretrained = True )
225
+ squeezenet = models.squeezenet1_0(pretrained = True )
221
226
222
227
223
228
Transforms
0 commit comments