Skip to content

Commit 14d4e4a

Browse files
Maratyszczaapaszke
authored andcommitted
Document SqueezeNet models in the README
1 parent d44273b commit 14d4e4a

File tree

1 file changed

+7
-2
lines changed

1 file changed

+7
-2
lines changed

README.rst

Lines changed: 7 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -199,6 +199,8 @@ architectures:
199199
VGG-19 (with and without batch normalization)
200200
- `ResNet <https://arxiv.org/abs/1512.03385>`__: ResNet-18, ResNet-34,
201201
ResNet-50, ResNet-101, ResNet-152
202+
- `SqueezeNet <https://arxiv.org/abs/1602.07360>`__: SqueezeNet 1.0, and
203+
SqueezeNet 1.1
202204

203205
You can construct a model with random weights by calling its
204206
constructor:
@@ -208,16 +210,19 @@ constructor:
208210
import torchvision.models as models
209211
resnet18 = models.resnet18()
210212
alexnet = models.alexnet()
213+
vgg16 = model.vgg16()
214+
squeezenet = models.squeezenet1_0()
211215
212-
We provide pre-trained models for the ResNet variants and AlexNet, using
213-
the PyTorch `model zoo <http://pytorch.org/docs/model_zoo.html>`__.
216+
We provide pre-trained models for the ResNet variants, SqueezeNet 1.0 and 1.1,
217+
and AlexNet, using the PyTorch `model zoo <http://pytorch.org/docs/model_zoo.html>`__.
214218
These can be constructed by passing ``pretrained=True``:
215219

216220
.. code:: python
217221
218222
import torchvision.models as models
219223
resnet18 = models.resnet18(pretrained=True)
220224
alexnet = models.alexnet(pretrained=True)
225+
squeezenet = models.squeezenet1_0(pretrained=True)
221226
222227
223228
Transforms

0 commit comments

Comments
 (0)