|
| 1 | +import math |
| 2 | +import torch |
| 3 | +import torch.nn as nn |
| 4 | +import torch.utils.model_zoo as model_zoo |
| 5 | + |
| 6 | + |
| 7 | +__all__ = ['SqueezeNet', 'squeezenet1_0', 'squeezenet1_1'] |
| 8 | + |
| 9 | + |
| 10 | +model_urls = { |
| 11 | + 'squeezenet1_0': 'https://s3.amazonaws.com/pytorch/models/squeezenet1_0-a815701f.pth', |
| 12 | + 'squeezenet1_1': 'https://s3.amazonaws.com/pytorch/models/squeezenet1_1-f364aa15.pth', |
| 13 | +} |
| 14 | + |
| 15 | + |
| 16 | +class Fire(nn.Module): |
| 17 | + def __init__(self, inplanes, squeeze_planes, |
| 18 | + expand1x1_planes, expand3x3_planes): |
| 19 | + super(Fire, self).__init__() |
| 20 | + self.inplanes = inplanes |
| 21 | + self.squeeze = nn.Conv2d(inplanes, squeeze_planes, kernel_size=1) |
| 22 | + self.squeeze_activation = nn.ReLU(inplace=True) |
| 23 | + self.expand1x1 = nn.Conv2d(squeeze_planes, expand1x1_planes, |
| 24 | + kernel_size=1) |
| 25 | + self.expand1x1_activation = nn.ReLU(inplace=True) |
| 26 | + self.expand3x3 = nn.Conv2d(squeeze_planes, expand3x3_planes, |
| 27 | + kernel_size=3, padding=1) |
| 28 | + self.expand3x3_activation = nn.ReLU(inplace=True) |
| 29 | + |
| 30 | + def forward(self, x): |
| 31 | + x = self.squeeze_activation(self.squeeze(x)) |
| 32 | + return torch.cat([ |
| 33 | + self.expand1x1_activation(self.expand1x1(x)), |
| 34 | + self.expand3x3_activation(self.expand3x3(x)) |
| 35 | + ], 1) |
| 36 | + |
| 37 | + |
| 38 | +class SqueezeNet(nn.Module): |
| 39 | + def __init__(self, version=1.0, num_classes=1000): |
| 40 | + super(SqueezeNet, self).__init__() |
| 41 | + if version not in [1.0, 1.1]: |
| 42 | + raise ValueError("Unsupported SqueezeNet version {version}:" |
| 43 | + "1.0 or 1.1 expected".format(version=version)) |
| 44 | + self.num_classes = num_classes |
| 45 | + if version == 1.0: |
| 46 | + self.features = nn.Sequential( |
| 47 | + nn.Conv2d(3, 96, kernel_size=7, stride=2), |
| 48 | + nn.ReLU(inplace=True), |
| 49 | + nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True), |
| 50 | + Fire(96, 16, 64, 64), |
| 51 | + Fire(128, 16, 64, 64), |
| 52 | + Fire(128, 32, 128, 128), |
| 53 | + nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True), |
| 54 | + Fire(256, 32, 128, 128), |
| 55 | + Fire(256, 48, 192, 192), |
| 56 | + Fire(384, 48, 192, 192), |
| 57 | + Fire(384, 64, 256, 256), |
| 58 | + nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True), |
| 59 | + Fire(512, 64, 256, 256), |
| 60 | + ) |
| 61 | + else: |
| 62 | + self.features = nn.Sequential( |
| 63 | + nn.Conv2d(3, 64, kernel_size=3, stride=2), |
| 64 | + nn.ReLU(inplace=True), |
| 65 | + nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True), |
| 66 | + Fire(64, 16, 64, 64), |
| 67 | + Fire(128, 16, 64, 64), |
| 68 | + nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True), |
| 69 | + Fire(128, 32, 128, 128), |
| 70 | + Fire(256, 32, 128, 128), |
| 71 | + nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True), |
| 72 | + Fire(256, 48, 192, 192), |
| 73 | + Fire(384, 48, 192, 192), |
| 74 | + Fire(384, 64, 256, 256), |
| 75 | + Fire(512, 64, 256, 256), |
| 76 | + ) |
| 77 | + # Final convolution is initialized differently form the rest |
| 78 | + final_conv = nn.Conv2d(512, num_classes, kernel_size=1) |
| 79 | + self.classifier = nn.Sequential( |
| 80 | + nn.Dropout(p=0.5), |
| 81 | + final_conv, |
| 82 | + nn.ReLU(inplace=True), |
| 83 | + nn.AvgPool2d(13) |
| 84 | + ) |
| 85 | + |
| 86 | + for m in self.modules(): |
| 87 | + if isinstance(m, nn.Conv2d): |
| 88 | + gain = 2.0 |
| 89 | + if m is final_conv: |
| 90 | + m.weight.data.normal_(0, 0.01) |
| 91 | + else: |
| 92 | + fan_in = m.kernel_size[0] * m.kernel_size[1] * m.in_channels |
| 93 | + u = math.sqrt(3.0 * gain / fan_in) |
| 94 | + m.weight.data.uniform_(-u, u) |
| 95 | + if m.bias is not None: |
| 96 | + m.bias.data.zero_() |
| 97 | + |
| 98 | + def forward(self, x): |
| 99 | + x = self.features(x) |
| 100 | + x = self.classifier(x) |
| 101 | + return x.view(x.size(0), self.num_classes) |
| 102 | + |
| 103 | + |
| 104 | +def squeezenet1_0(pretrained=False): |
| 105 | + r"""SqueezeNet model architecture from the `"SqueezeNet: AlexNet-level |
| 106 | + accuracy with 50x fewer parameters and <0.5MB model size" |
| 107 | + <https://arxiv.org/abs/1602.07360>`_ paper. |
| 108 | +
|
| 109 | + Args: |
| 110 | + pretrained (bool): If True, returns a model pre-trained on ImageNet |
| 111 | + """ |
| 112 | + model = SqueezeNet(version=1.0) |
| 113 | + if pretrained: |
| 114 | + model.load_state_dict(model_zoo.load_url(model_urls['squeezenet1_0'])) |
| 115 | + return model |
| 116 | + |
| 117 | + |
| 118 | +def squeezenet1_1(pretrained=False): |
| 119 | + r"""SqueezeNet 1.1 model from the `official SqueezeNet repo |
| 120 | + <https://github.com/DeepScale/SqueezeNet/tree/master/SqueezeNet_v1.1>`_. |
| 121 | + SqueezeNet 1.1 has 2.4x less computation and slightly fewer parameters |
| 122 | + than SqueezeNet 1.0, without sacrificing accuracy. |
| 123 | +
|
| 124 | + Args: |
| 125 | + pretrained (bool): If True, returns a model pre-trained on ImageNet |
| 126 | + """ |
| 127 | + model = SqueezeNet(version=1.1) |
| 128 | + if pretrained: |
| 129 | + model.load_state_dict(model_zoo.load_url(model_urls['squeezenet1_1'])) |
| 130 | + return model |
0 commit comments