@@ -98,58 +98,6 @@ You can construct a model with random weights by calling its constructor:
98
98
convnext_large = models.convnext_large()
99
99
100
100
We provide pre-trained models, using the PyTorch :mod: `torch.utils.model_zoo `.
101
- These can be constructed by passing ``pretrained=True ``:
102
-
103
- .. code :: python
104
-
105
- import torchvision.models as models
106
- resnet18 = models.resnet18(pretrained = True )
107
- alexnet = models.alexnet(pretrained = True )
108
- squeezenet = models.squeezenet1_0(pretrained = True )
109
- vgg16 = models.vgg16(pretrained = True )
110
- densenet = models.densenet161(pretrained = True )
111
- inception = models.inception_v3(pretrained = True )
112
- googlenet = models.googlenet(pretrained = True )
113
- shufflenet = models.shufflenet_v2_x1_0(pretrained = True )
114
- mobilenet_v2 = models.mobilenet_v2(pretrained = True )
115
- mobilenet_v3_large = models.mobilenet_v3_large(pretrained = True )
116
- mobilenet_v3_small = models.mobilenet_v3_small(pretrained = True )
117
- resnext50_32x4d = models.resnext50_32x4d(pretrained = True )
118
- wide_resnet50_2 = models.wide_resnet50_2(pretrained = True )
119
- mnasnet = models.mnasnet1_0(pretrained = True )
120
- efficientnet_b0 = models.efficientnet_b0(pretrained = True )
121
- efficientnet_b1 = models.efficientnet_b1(pretrained = True )
122
- efficientnet_b2 = models.efficientnet_b2(pretrained = True )
123
- efficientnet_b3 = models.efficientnet_b3(pretrained = True )
124
- efficientnet_b4 = models.efficientnet_b4(pretrained = True )
125
- efficientnet_b5 = models.efficientnet_b5(pretrained = True )
126
- efficientnet_b6 = models.efficientnet_b6(pretrained = True )
127
- efficientnet_b7 = models.efficientnet_b7(pretrained = True )
128
- efficientnet_v2_s = models.efficientnet_v2_s(pretrained = True )
129
- efficientnet_v2_m = models.efficientnet_v2_m(pretrained = True )
130
- efficientnet_v2_l = models.efficientnet_v2_l(pretrained = True )
131
- regnet_y_400mf = models.regnet_y_400mf(pretrained = True )
132
- regnet_y_800mf = models.regnet_y_800mf(pretrained = True )
133
- regnet_y_1_6gf = models.regnet_y_1_6gf(pretrained = True )
134
- regnet_y_3_2gf = models.regnet_y_3_2gf(pretrained = True )
135
- regnet_y_8gf = models.regnet_y_8gf(pretrained = True )
136
- regnet_y_16gf = models.regnet_y_16gf(pretrained = True )
137
- regnet_y_32gf = models.regnet_y_32gf(pretrained = True )
138
- regnet_x_400mf = models.regnet_x_400mf(pretrained = True )
139
- regnet_x_800mf = models.regnet_x_800mf(pretrained = True )
140
- regnet_x_1_6gf = models.regnet_x_1_6gf(pretrained = True )
141
- regnet_x_3_2gf = models.regnet_x_3_2gf(pretrained = True )
142
- regnet_x_8gf = models.regnet_x_8gf(pretrained = True )
143
- regnet_x_16gf = models.regnet_x_16gf(pretrainedTrue)
144
- regnet_x_32gf = models.regnet_x_32gf(pretrained = True )
145
- vit_b_16 = models.vit_b_16(pretrained = True )
146
- vit_b_32 = models.vit_b_32(pretrained = True )
147
- vit_l_16 = models.vit_l_16(pretrained = True )
148
- vit_l_32 = models.vit_l_32(pretrained = True )
149
- convnext_tiny = models.convnext_tiny(pretrained = True )
150
- convnext_small = models.convnext_small(pretrained = True )
151
- convnext_base = models.convnext_base(pretrained = True )
152
- convnext_large = models.convnext_large(pretrained = True )
153
101
154
102
Instancing a pre-trained model will download its weights to a cache directory.
155
103
This directory can be set using the `TORCH_HOME ` environment variable. See
@@ -525,7 +473,7 @@ Obtaining a pre-trained quantized model can be done with a few lines of code:
525
473
.. code :: python
526
474
527
475
import torchvision.models as models
528
- model = models.quantization.mobilenet_v2(pretrained = True , quantize = True )
476
+ model = models.quantization.mobilenet_v2(weights = MobileNet_V2_QuantizedWeights. IMAGENET1K_QNNPACK_V1 , quantize = True )
529
477
model.eval()
530
478
# run the model with quantized inputs and weights
531
479
out = model(torch.rand(1 , 3 , 224 , 224 ))
0 commit comments