|
| 1 | +import sys |
| 2 | + |
| 3 | +from benchmark_base import BenchmarkBase |
| 4 | + |
| 5 | +import torch |
| 6 | +import torch.nn as nn |
| 7 | +from torch._inductor.utils import fresh_inductor_cache |
| 8 | + |
| 9 | + |
| 10 | +class NestedModule(nn.Module): |
| 11 | + def __init__(self, depth=3, width=4): |
| 12 | + super().__init__() |
| 13 | + self.depth = depth |
| 14 | + self.width = width |
| 15 | + |
| 16 | + self.relu_a = nn.ReLU() |
| 17 | + self.relu_b = nn.ReLU() |
| 18 | + |
| 19 | + sub_mods = [] |
| 20 | + if depth > 0: |
| 21 | + for i in range(width): |
| 22 | + sub_mods.append(NestedModule(depth - 1, width)) |
| 23 | + else: |
| 24 | + for i in range(width): |
| 25 | + sub_mods.append(nn.ReLU()) |
| 26 | + self.sub_mods = nn.Sequential(*sub_mods) |
| 27 | + self.a = 2 |
| 28 | + |
| 29 | + def forward(self, x): |
| 30 | + x = self.relu_a(x) |
| 31 | + x = x + self.sub_mods(x) |
| 32 | + return x + self.relu_b(x) + self.a |
| 33 | + |
| 34 | + |
| 35 | +class Benchmark(BenchmarkBase): |
| 36 | + def __init__( |
| 37 | + self, |
| 38 | + ModuleClass, |
| 39 | + backend="eager", |
| 40 | + is_gpu=False, |
| 41 | + dynamic=False, |
| 42 | + ): |
| 43 | + self.ModuleClass = ModuleClass |
| 44 | + self._name = ModuleClass.__name__ |
| 45 | + self._is_gpu = is_gpu |
| 46 | + |
| 47 | + super().__init__( |
| 48 | + category="basic", |
| 49 | + backend=backend, |
| 50 | + device="cuda" if self._is_gpu else "cpu", |
| 51 | + dynamic=dynamic, |
| 52 | + ) |
| 53 | + |
| 54 | + def name(self): |
| 55 | + prefix = f"{self.category()}_{self._name}_{self.backend()}" |
| 56 | + return prefix |
| 57 | + |
| 58 | + def _prepare_once(self): |
| 59 | + self.m = self.ModuleClass() |
| 60 | + torch.set_float32_matmul_precision("high") |
| 61 | + self.input = torch.ones(10, device=self.device()) |
| 62 | + |
| 63 | + def _prepare(self): |
| 64 | + torch._dynamo.reset() |
| 65 | + |
| 66 | + def _work(self): |
| 67 | + # enable_cpp_symbolic_shape_guards has impact on this benchmark |
| 68 | + # Keep using False value for consistency. |
| 69 | + with ( |
| 70 | + fresh_inductor_cache(), |
| 71 | + ): |
| 72 | + opt_m = torch.compile(backend=self.backend(), dynamic=self.is_dynamic())( |
| 73 | + self.m.cuda() if self._is_gpu else self.m |
| 74 | + ) |
| 75 | + opt_m(self.input) |
| 76 | + |
| 77 | + |
| 78 | +def main(): |
| 79 | + result_path = sys.argv[1] |
| 80 | + benchmarks = [ |
| 81 | + Benchmark(NestedModule), |
| 82 | + ] |
| 83 | + for b in benchmarks: |
| 84 | + b.enable_compile_time_instruction_count().collect_all().append_results( |
| 85 | + result_path |
| 86 | + ) |
| 87 | + |
| 88 | + |
| 89 | +if __name__ == "__main__": |
| 90 | + main() |
0 commit comments