|
| 1 | +from __future__ import annotations |
| 2 | + |
| 3 | +import torch |
| 4 | + |
| 5 | +import helion |
| 6 | +from helion._testing import run_example |
| 7 | +import helion.language as hl |
| 8 | + |
| 9 | + |
| 10 | +@helion.kernel() |
| 11 | +def jagged_mean_kernel( |
| 12 | + x_data: torch.Tensor, |
| 13 | + x_offsets: torch.Tensor, |
| 14 | + x_feature_counts: torch.Tensor, # [num_rows] - number of features per row |
| 15 | + max_M_tensor: torch.Tensor, # Dummy tensor whose size indicates max features |
| 16 | +) -> torch.Tensor: |
| 17 | + """ |
| 18 | + Compute the mean of each row in a jagged tensor with variable features per row. |
| 19 | +
|
| 20 | + Args |
| 21 | + ---- |
| 22 | + x_data : 2-D tensor of shape (total_elements, max_M) holding all elements. |
| 23 | + x_offsets : (num_rows + 1) tensor. Row i is the slice |
| 24 | + x_data[x_offsets[i] : x_offsets[i+1], :]. |
| 25 | + x_feature_counts: (num_rows) tensor. Number of valid features for each row. |
| 26 | + max_M_tensor : Dummy tensor whose numel() gives max number of features. |
| 27 | +
|
| 28 | + Returns |
| 29 | + ------- |
| 30 | + result : 2-D tensor of shape (num_rows, max_M) containing the mean of each row. |
| 31 | + Invalid features (beyond x_feature_counts[i]) are set to 0. |
| 32 | + """ |
| 33 | + num_rows = x_offsets.size(0) - 1 |
| 34 | + max_M = max_M_tensor.numel() # Extract max features from dummy tensor |
| 35 | + |
| 36 | + out = torch.zeros([num_rows, max_M], dtype=x_data.dtype, device=x_data.device) |
| 37 | + |
| 38 | + # Flatten x_data for easier indexing |
| 39 | + x_flat = x_data.view(-1) |
| 40 | + |
| 41 | + # Process rows in tiles |
| 42 | + for tile_b in hl.tile(num_rows): |
| 43 | + starts = x_offsets[tile_b] |
| 44 | + ends = x_offsets[tile_b.index + 1] |
| 45 | + nnz = ends - starts |
| 46 | + max_nnz = nnz.amax() |
| 47 | + |
| 48 | + # Get feature counts for this tile of rows |
| 49 | + feature_counts = x_feature_counts[tile_b] |
| 50 | + |
| 51 | + # Process features in tiles |
| 52 | + for tile_m in hl.tile(max_M): |
| 53 | + # Create mask for valid features |
| 54 | + feature_valid = tile_m.index < feature_counts[:, None] |
| 55 | + |
| 56 | + # Initialize accumulator |
| 57 | + row_sums = hl.zeros([tile_b, tile_m], dtype=x_data.dtype) |
| 58 | + |
| 59 | + # Process elements within each row |
| 60 | + for tile_k in hl.tile(0, max_nnz): |
| 61 | + # Compute flattened indices |
| 62 | + base_indices = starts[:, None] + tile_k.index[None, :] |
| 63 | + flat_indices = ( |
| 64 | + base_indices[:, :, None] * max_M + tile_m.index[None, None, :] |
| 65 | + ) |
| 66 | + |
| 67 | + # Combined mask: valid row element AND valid feature |
| 68 | + row_mask = tile_k.index[None, :] < nnz[:, None] |
| 69 | + combined_mask = row_mask[:, :, None] & feature_valid[:, None, :] |
| 70 | + |
| 71 | + x_slice = hl.load( |
| 72 | + x_flat, |
| 73 | + [flat_indices], |
| 74 | + extra_mask=combined_mask, |
| 75 | + ) |
| 76 | + # Accumulate - sum across the k dimension (dim=1) |
| 77 | + row_sums = row_sums + x_slice.sum(dim=1) |
| 78 | + |
| 79 | + # Compute mean |
| 80 | + nnz_float = nnz.to(x_data.dtype) |
| 81 | + nnz_expanded = nnz_float[:, None] |
| 82 | + |
| 83 | + # Compute result with feature masking |
| 84 | + result = torch.where(nnz_expanded > 0, row_sums / nnz_expanded, 0.0) |
| 85 | + |
| 86 | + # Apply feature mask to output |
| 87 | + out[tile_b, tile_m] = torch.where(feature_valid, result, 0.0) |
| 88 | + |
| 89 | + return out |
| 90 | + |
| 91 | + |
| 92 | +def reference_jagged_mean_kernel_pytorch( |
| 93 | + x_data: torch.Tensor, |
| 94 | + x_offsets: torch.Tensor, |
| 95 | + x_feature_counts: torch.Tensor, |
| 96 | + max_M: int, |
| 97 | +) -> torch.Tensor: |
| 98 | + """PyTorch reference implementation for jagged mean with variable features.""" |
| 99 | + num_rows = x_offsets.numel() - 1 |
| 100 | + out = torch.zeros((num_rows, max_M), dtype=x_data.dtype, device=x_data.device) |
| 101 | + for i in range(num_rows): |
| 102 | + start = int(x_offsets[i]) |
| 103 | + end = int(x_offsets[i + 1]) |
| 104 | + num_features = int(x_feature_counts[i]) |
| 105 | + if end > start and num_features > 0: |
| 106 | + out[i, :num_features] = x_data[start:end, :num_features].mean(dim=0) |
| 107 | + return out |
| 108 | + |
| 109 | + |
| 110 | +def jagged_mean_tritonbench( |
| 111 | + x: torch.Tensor, B: int, M: int, seqlen: int, sparsity: float |
| 112 | +) -> torch.Tensor: |
| 113 | + """ |
| 114 | + Wrapper for tritonbench that matches the expected interface. |
| 115 | +
|
| 116 | + Args: |
| 117 | + x: Nested tensor in jagged format with shape (B, *, M) |
| 118 | + B: Batch size |
| 119 | + M: Number of features |
| 120 | + seqlen: Maximum sequence length |
| 121 | + sparsity: Sparsity factor (not used) |
| 122 | +
|
| 123 | + Returns: |
| 124 | + Tensor of shape (B, M) with mean values per row and feature |
| 125 | + """ |
| 126 | + x_values = x._values |
| 127 | + x_offsets = x._offsets # pyright: ignore[reportAttributeAccessIssue] |
| 128 | + |
| 129 | + feature_counts = torch.full( |
| 130 | + (B,), |
| 131 | + M, |
| 132 | + dtype=torch.int32, |
| 133 | + device=x_values.device, # pyright: ignore[reportAttributeAccessIssue] |
| 134 | + ) |
| 135 | + max_M_tensor = torch.empty(M, device=x_values.device) # pyright: ignore[reportAttributeAccessIssue] |
| 136 | + |
| 137 | + return jagged_mean_kernel(x_values, x_offsets, feature_counts, max_M_tensor) |
| 138 | + |
| 139 | + |
| 140 | +def main() -> None: |
| 141 | + num_rows, max_cols = 32, 64 |
| 142 | + device = "cuda" |
| 143 | + |
| 144 | + lengths = torch.randint(1, max_cols + 1, (num_rows,), device=device) |
| 145 | + x_offsets = torch.cat( |
| 146 | + [torch.zeros(1, dtype=torch.long, device=device), torch.cumsum(lengths, dim=0)] |
| 147 | + ) |
| 148 | + nnz = int(x_offsets[-1]) |
| 149 | + M = 8 # number of features |
| 150 | + x_data = torch.randn(nnz, M, dtype=torch.float32, device=device) |
| 151 | + feature_counts = torch.randint( |
| 152 | + 1, M + 1, (num_rows,), dtype=torch.int32, device=device |
| 153 | + ) |
| 154 | + max_M_tensor = torch.empty(M, device=device) |
| 155 | + |
| 156 | + run_example( |
| 157 | + lambda x, o, fc, mt: jagged_mean_kernel(x, o, fc, mt), |
| 158 | + lambda x, o, fc, mt: reference_jagged_mean_kernel_pytorch(x, o, fc, mt.numel()), |
| 159 | + (x_data, x_offsets, feature_counts, max_M_tensor), |
| 160 | + ) |
| 161 | + |
| 162 | + |
| 163 | +if __name__ == "__main__": |
| 164 | + main() |
0 commit comments