|
| 1 | +# Copyright (c) Meta Platforms, Inc. and affiliates. |
| 2 | +# All rights reserved. |
| 3 | +# |
| 4 | +# This source code is licensed under the BSD 3-Clause license found in the |
| 5 | +# LICENSE file in the root directory of this source tree. |
| 6 | + |
| 7 | +import tempfile |
| 8 | +import unittest |
| 9 | + |
| 10 | +import torch |
| 11 | +from torch.testing._internal.common_utils import ( |
| 12 | + TestCase, |
| 13 | + instantiate_parametrized_tests, |
| 14 | + parametrize, |
| 15 | + run_tests, |
| 16 | +) |
| 17 | + |
| 18 | +from torchao.quantization import Int4WeightOnlyConfig, quantize_ |
| 19 | +from torchao.quantization.quantize_.common.packing_format import PackingFormat |
| 20 | +from torchao.quantization.quantize_.workflows.int4.int4_tensor_core_tile_packed_tensor import ( |
| 21 | + Int4TensorCoreTilePackedTensor, |
| 22 | +) |
| 23 | +from torchao.quantization.utils import compute_error |
| 24 | +from torchao.utils import TORCH_VERSION_AT_LEAST_2_4 |
| 25 | + |
| 26 | +TENSOR_CORE_TILED_CONFIG = Int4WeightOnlyConfig( |
| 27 | + group_size=128, |
| 28 | + packing_format=PackingFormat.TENSOR_CORE_TILE_PACKED, |
| 29 | + version=2, |
| 30 | +) |
| 31 | + |
| 32 | + |
| 33 | +@unittest.skipIf(not TORCH_VERSION_AT_LEAST_2_4, "Need pytorch 2.4+") |
| 34 | +@unittest.skipIf(not torch.cuda.is_available(), "Need CUDA available") |
| 35 | +class TestInt4TensorCoreTilePackedTensor(TestCase): |
| 36 | + def setUp(self): |
| 37 | + self.GPU_DEVICES = ["cuda"] if torch.cuda.is_available() else [] |
| 38 | + |
| 39 | + @parametrize("config", [TENSOR_CORE_TILED_CONFIG]) |
| 40 | + @parametrize( |
| 41 | + "sizes", |
| 42 | + [ |
| 43 | + ((128,), 256, 128), |
| 44 | + ((32, 128), 512, 128), |
| 45 | + ((2, 32, 128), 256, 128), |
| 46 | + ], |
| 47 | + ) |
| 48 | + def test_linear(self, config, sizes): |
| 49 | + dtype = torch.bfloat16 |
| 50 | + device = "cuda" |
| 51 | + |
| 52 | + M, N, K = sizes |
| 53 | + input = torch.randn(*M, K, dtype=dtype, device=device) |
| 54 | + linear = torch.nn.Linear(K, N, dtype=dtype, device=device) |
| 55 | + |
| 56 | + original = linear(input) |
| 57 | + quantize_(linear, config) |
| 58 | + quantized = linear(input) |
| 59 | + self.assertTrue(compute_error(original, quantized) > 1) |
| 60 | + |
| 61 | + compiled_linear = torch.compile(linear) |
| 62 | + quantized_and_compiled = compiled_linear(input) |
| 63 | + self.assertTrue(compute_error(original, quantized_and_compiled) > 1) |
| 64 | + |
| 65 | + def test_from_hp(self): |
| 66 | + """Test creating Int4TensorCoreTilePackedTensor from high precision tensor""" |
| 67 | + dtype = torch.bfloat16 |
| 68 | + device = "cuda" |
| 69 | + hp_tensor = torch.randn(256, 128, dtype=dtype, device=device) |
| 70 | + block_size = (1, 64) |
| 71 | + |
| 72 | + tensor = Int4TensorCoreTilePackedTensor.from_hp(hp_tensor, block_size) |
| 73 | + |
| 74 | + self.assertEqual(tensor.shape, hp_tensor.shape) |
| 75 | + self.assertEqual(tensor.block_size, block_size) |
| 76 | + self.assertEqual(tensor.device.type, device) |
| 77 | + self.assertEqual(tensor.dtype, dtype) |
| 78 | + |
| 79 | + @parametrize("config", [TENSOR_CORE_TILED_CONFIG]) |
| 80 | + def test_to_device(self, config): |
| 81 | + for device in self.GPU_DEVICES: |
| 82 | + linear = torch.nn.Linear(128, 256, dtype=torch.bfloat16) |
| 83 | + quantize_(linear.cuda(), config) |
| 84 | + linear.to(device) |
| 85 | + |
| 86 | + linear = torch.nn.Linear(128, 256, dtype=torch.bfloat16) |
| 87 | + quantize_(linear.cuda(), config) |
| 88 | + linear.to(device=device) |
| 89 | + |
| 90 | + @parametrize("config", [TENSOR_CORE_TILED_CONFIG]) |
| 91 | + def test_module_path(self, config): |
| 92 | + linear = torch.nn.Linear(128, 256, dtype=torch.bfloat16) |
| 93 | + quantize_(linear.cuda(), config) |
| 94 | + self.assertEqual( |
| 95 | + str(type(linear.weight)), |
| 96 | + "<class 'torchao.quantization.Int4TensorCoreTilePackedTensor'>", |
| 97 | + ) |
| 98 | + |
| 99 | + def test_serialization(self): |
| 100 | + """Test saving and loading the tensor directly and via state_dict""" |
| 101 | + dtype = torch.bfloat16 |
| 102 | + device = "cuda" |
| 103 | + hp_tensor = torch.randn(128, 256, dtype=dtype, device=device) |
| 104 | + block_size = (1, 64) |
| 105 | + |
| 106 | + tensor = Int4TensorCoreTilePackedTensor.from_hp(hp_tensor, block_size) |
| 107 | + |
| 108 | + # Test direct tensor serialization |
| 109 | + with tempfile.NamedTemporaryFile() as f: |
| 110 | + torch.save(tensor, f) |
| 111 | + f.seek(0) |
| 112 | + loaded_tensor = torch.load(f) |
| 113 | + |
| 114 | + self.assertEqual(loaded_tensor.shape, tensor.shape) |
| 115 | + self.assertEqual(loaded_tensor.block_size, tensor.block_size) |
| 116 | + self.assertEqual( |
| 117 | + str(type(loaded_tensor)), |
| 118 | + "<class 'torchao.quantization.Int4TensorCoreTilePackedTensor'>", |
| 119 | + ) |
| 120 | + |
| 121 | + # Test state_dict serialization |
| 122 | + linear = torch.nn.Linear(128, 256, dtype=torch.bfloat16) |
| 123 | + quantize_(linear.cuda(), TENSOR_CORE_TILED_CONFIG) |
| 124 | + |
| 125 | + with tempfile.NamedTemporaryFile() as f: |
| 126 | + torch.save(linear.state_dict(), f) |
| 127 | + f.seek(0) |
| 128 | + state_dict = torch.load(f) |
| 129 | + self.assertEqual( |
| 130 | + str(type(state_dict["weight"])), |
| 131 | + "<class 'torchao.quantization.Int4TensorCoreTilePackedTensor'>", |
| 132 | + ) |
| 133 | + |
| 134 | + @parametrize("group_size", [32, 64, 128]) |
| 135 | + def test_different_group_sizes(self, group_size): |
| 136 | + """Test with different group sizes""" |
| 137 | + dtype = torch.bfloat16 |
| 138 | + device = "cuda" |
| 139 | + hp_tensor = torch.randn(256, 512, dtype=dtype, device=device) |
| 140 | + block_size = (1, group_size) |
| 141 | + |
| 142 | + tensor = Int4TensorCoreTilePackedTensor.from_hp(hp_tensor, block_size) |
| 143 | + |
| 144 | + self.assertEqual(tensor.shape, hp_tensor.shape) |
| 145 | + self.assertEqual(tensor.block_size, block_size) |
| 146 | + |
| 147 | + def test_error_conditions(self): |
| 148 | + """Test various error conditions""" |
| 149 | + dtype = torch.bfloat16 |
| 150 | + device = "cuda" |
| 151 | + hp_tensor = torch.randn(128, 256, dtype=dtype, device=device) |
| 152 | + |
| 153 | + # Test invalid block_size length |
| 154 | + with self.assertRaises(AssertionError): |
| 155 | + Int4TensorCoreTilePackedTensor.from_hp( |
| 156 | + hp_tensor, (64,) |
| 157 | + ) # block_size length mismatch |
| 158 | + |
| 159 | + # Test non-groupwise quantization |
| 160 | + with self.assertRaises(AssertionError): |
| 161 | + Int4TensorCoreTilePackedTensor.from_hp( |
| 162 | + hp_tensor, (2, 64) |
| 163 | + ) # first element should be 1 |
| 164 | + |
| 165 | + |
| 166 | +instantiate_parametrized_tests(TestInt4TensorCoreTilePackedTensor) |
| 167 | + |
| 168 | + |
| 169 | +if __name__ == "__main__": |
| 170 | + run_tests() |
0 commit comments