Skip to content

Implement logp for add and mul ops involving random variables #4653

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 5 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
110 changes: 105 additions & 5 deletions pymc3/distributions/logp.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,8 @@
from aesara.graph.fg import FunctionGraph
from aesara.graph.op import Op, compute_test_value
from aesara.graph.type import CType
from aesara.scalar.basic import Add, Mul
from aesara.tensor.elemwise import Elemwise
from aesara.tensor.random.op import RandomVariable
from aesara.tensor.random.opt import local_subtensor_rv_lift
from aesara.tensor.subtensor import (
Expand All @@ -37,7 +39,13 @@
)
from aesara.tensor.var import TensorVariable

from pymc3.aesaraf import extract_rv_and_value_vars, floatX, rvs_to_value_vars
from pymc3.aesaraf import (
change_rv_size,
extract_rv_and_value_vars,
floatX,
rvs_to_value_vars,
walk_model,
)


@singledispatch
Expand Down Expand Up @@ -258,8 +266,101 @@ def _logp(
The default assumes that the log-likelihood of a term is a zero.

"""
value_var = rvs_to_values.get(var, var)
return at.zeros_like(value_var)
# value_var = rvs_to_values.get(var, var)
# return at.zeros_like(value_var)
raise NotImplementedError(f"Logp cannot be computed for op {op}")
Copy link
Member Author

@ricardoV94 ricardoV94 May 26, 2021

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This is temporary, just to catch errors with DimShuffle ops. It causes the test_logpt_subtensor to fail



@_logp.register(Elemwise)
def elemwise_logp(op, *args, **kwargs):
return _logp(op.scalar_op, *args, **kwargs)


# TODO: Implement DimShuffle logp?
# @_logp.register(DimShuffle)
# def logp_dimshuffle(op, var, *args, **kwargs):
# if var.owner and len(var.owner.inputs) == 1:
# inp = var.owner.inputs[0]
# if inp.owner and hasattr(inp.owner, 'op'):
# return _logp(inp.owner.op, inp, *args, **kwargs)
# raise NotImplementedError


@_logp.register(Add)
@_logp.register(Mul)
def linear_logp(
op,
var,
rvs_to_values,
*linear_inputs,
transformed=True,
sum=False,
**kwargs,
):

if len(linear_inputs) != 2:
raise ValueError(f"Expected 2 inputs but got: {len(linear_inputs)}")
Comment on lines +301 to +302
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This is an implementation limitation and not a misspecification of any kind, so, if we're not going to support more than two arguments for Add and/or Mul, we should probably make this a NotImplementedError.

Copy link
Member Author

@ricardoV94 ricardoV94 May 26, 2021

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Aren't Add/Mul binary input ops by definition? I put this just as a sanity check.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The scalar Ops might be, but the Elemwise aren't necessarily.


# Find base_rv and constant inputs
base_rv = []
constant = []
for inp in linear_inputs:
res_ancestors = list(walk_model((inp,), walk_past_rvs=True))
# unregistered variables do not contain a value_var tag
res_unregistered_ancestors = [
v
for v in res_ancestors
if v.owner
and isinstance(v.owner.op, RandomVariable)
and not getattr(v.tag, "value_var", False)
]
if res_unregistered_ancestors:
base_rv.append(inp)
else:
constant.append(inp)

if len(base_rv) != 1:
raise NotImplementedError(
f"Logp of linear transform requires one branch with an unregistered RandomVariable but got {len(base_rv)}"
)

base_rv = base_rv[0]
constant = constant[0]
var_value = rvs_to_values.get(var, var)

# Get logp of base_rv with transformed input
if isinstance(op, Add):
base_value = var_value - constant
else:
base_value = var_value / constant

# Change base rv shape if needed
if isinstance(base_rv.owner.op, RandomVariable):
ndim_supp = base_rv.owner.op.ndim_supp
if ndim_supp > 0:
new_size = base_value.shape[:-ndim_supp]
else:
new_size = base_value.shape
base_rv = change_rv_size(base_rv, new_size)

var_logp = logpt(base_rv, {base_rv: base_value}, transformed=transformed, sum=False, **kwargs)

# Apply product jacobian correction for continuous rvs
if isinstance(op, Mul) and "float" in base_rv.dtype:
var_logp -= at.log(at.abs_(constant))

# Replace rvs in graph
(var_logp,), _ = rvs_to_value_vars(
(var_logp,),
apply_transforms=transformed,
initial_replacements=None,
)

if sum:
var_logp = at.sum(var_logp)

var_logp.name = f"__logp_{var.name}"
return var_logp


def convert_indices(indices, entry):
Expand Down Expand Up @@ -318,8 +419,7 @@ def subtensor_logp(op, var, rvs_to_values, indexed_rv_var, *indices, **kwargs):
# subset of variables per the index.
var_copy = var.owner.clone().default_output()
fgraph = FunctionGraph(
[i for i in graph_inputs((indexed_rv_var,)) if not isinstance(i, Constant)],
[var_copy],
outputs=[var_copy],
clone=False,
)

Expand Down
140 changes: 139 additions & 1 deletion pymc3/tests/test_logp.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,8 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from contextlib import ExitStack as does_not_raise

import aesara
import aesara.tensor as at
import numpy as np
Expand All @@ -31,7 +33,7 @@
)

from pymc3.aesaraf import floatX, walk_model
from pymc3.distributions.continuous import Normal, Uniform
from pymc3.distributions.continuous import Exponential, Normal, Uniform
from pymc3.distributions.discrete import Bernoulli
from pymc3.distributions.logp import logpt
from pymc3.model import Model
Expand Down Expand Up @@ -69,6 +71,142 @@ def test_logpt_basic():
assert a_value_var in res_ancestors


def test_logpt_add():
"""
Mare sure we can compute a log-likelihood for ``loc + Y`` where ``Y`` is an unregistered
random variable and ``loc`` is an tensor variable or a registered random variable
"""
with Model() as m:
loc = Exponential("loc", 10)
x = Normal.dist(0, 1) + loc
m.register_rv(x, "x")

loc_value_var = m.rvs_to_values[loc]
x_value_var = m.rvs_to_values[x]

x_logp = logpt(x, m.rvs_to_values[x])

res_ancestors = list(walk_model((x_logp,), walk_past_rvs=True))
res_rv_ancestors = [
v for v in res_ancestors if v.owner and isinstance(v.owner.op, RandomVariable)
]

# There shouldn't be any `RandomVariable`s in the resulting graph
assert len(res_rv_ancestors) == 0
assert loc_value_var in res_ancestors
assert x_value_var in res_ancestors

# Test logp is correct
f_logp = aesara.function([x_value_var, loc_value_var], x_logp)
np.testing.assert_almost_equal(f_logp(50, np.log(50)), sp.norm(50, 1).logpdf(50))
np.testing.assert_almost_equal(f_logp(50, np.log(10)), sp.norm(10, 1).logpdf(50), decimal=5)


def test_logpt_mul():
"""
Mare sure we can compute a log-likelihood for ``scale * Y`` where ``Y`` is an unregistered
random variable and ``scale`` is an tensor variable or a registered random variable
"""
with Model() as m:
scale = Exponential("scale", 10)
x = Exponential.dist(1) * scale
m.register_rv(x, "x")

scale_value_var = m.rvs_to_values[scale]
x_value_var = m.rvs_to_values[x]

x_logp = logpt(x, m.rvs_to_values[x])

res_ancestors = list(walk_model((x_logp,), walk_past_rvs=True))
res_rv_ancestors = [
v for v in res_ancestors if v.owner and isinstance(v.owner.op, RandomVariable)
]

# There shouldn't be any `RandomVariable`s in the resulting graph
assert len(res_rv_ancestors) == 0
assert scale_value_var in res_ancestors
assert x_value_var in res_ancestors

# Test logp is correct
f_logp = aesara.function([x_value_var, scale_value_var], x_logp)
np.testing.assert_almost_equal(f_logp(0, np.log(5)), sp.expon(scale=5).logpdf(0))
np.testing.assert_almost_equal(f_logp(2, np.log(2)), sp.expon(scale=2).logpdf(2))


def test_logpt_mul_add():
"""
Mare sure we can compute a log-likelihood for ``loc + scale * Y`` where ``Y`` is an unregistered
random variable and ``loc`` and ``scale`` are tensor variables or registered random variables
"""
with Model() as m:
loc = Exponential("loc", 10)
scale = Exponential("scale", 10)
x = loc + scale * Normal.dist(0, 1)
m.register_rv(x, "x")

loc_value_var = m.rvs_to_values[loc]
scale_value_var = m.rvs_to_values[scale]
x_value_var = m.rvs_to_values[x]

x_logp = logpt(x, m.rvs_to_values[x])

res_ancestors = list(walk_model((x_logp,), walk_past_rvs=True))
res_rv_ancestors = [
v for v in res_ancestors if v.owner and isinstance(v.owner.op, RandomVariable)
]

# There shouldn't be any `RandomVariable`s in the resulting graph
assert len(res_rv_ancestors) == 0
assert loc_value_var in res_ancestors
assert scale_value_var in res_ancestors
assert x_value_var in res_ancestors

# Test logp is correct
f_logp = aesara.function([x_value_var, loc_value_var, scale_value_var], x_logp)
np.testing.assert_almost_equal(f_logp(-1, np.log(0), np.log(2)), sp.norm(0, 2).logpdf(-1))
np.testing.assert_almost_equal(
f_logp(95, np.log(100), np.log(15)), sp.norm(100, 15).logpdf(95), decimal=6
)


@pytest.mark.parametrize("op", [at.add, at.mul])
def test_logpt_not_implemented(op):
"""Test that logpt for add and mul fail if inputs are 0 or 2 unregistered rvs"""

with Model() as m:
variable1 = at.as_tensor_variable(1, "variable1")
variable2 = at.scalar("variable2")
unregistered1 = Normal.dist(0, 1)
unregistered2 = Normal.dist(0, 1)
registered1 = Normal("registered1", 0, 1)
registered2 = Normal("registered2", 0, 1)

x_fail1 = op(variable1, variable2)
x_fail2 = op(unregistered1, unregistered2)
x_fail3 = op(registered1, variable1)
x_fail4 = op(registered1, registered2)

x_pass1 = op(variable1, unregistered2)
x_pass2 = op(unregistered1, variable2)
x_pass3 = op(registered1, unregistered1)

m.register_rv(x_fail1, "x_fail1")
m.register_rv(x_fail2, "x_fail2")
m.register_rv(x_fail3, "x_fail3")
m.register_rv(x_fail4, "x_fail4")
m.register_rv(x_pass1, "x_pass1")
m.register_rv(x_pass2, "x_pass2")
m.register_rv(x_pass3, "x_pass3")

for rv, value_var in m.rvs_to_values.items():
if "fail" in rv.name:
with pytest.raises(NotImplementedError):
logpt(rv, value_var)
else:
with does_not_raise():
logpt(rv, value_var)


@pytest.mark.parametrize(
"indices, size",
[
Expand Down