@@ -185,19 +185,19 @@ class GaussianRandomWalk(distribution.Continuous):
185
185
186
186
Parameters
187
187
----------
188
- mu: tensor
188
+ mu : tensor_like of float, default 0
189
189
innovation drift, defaults to 0.0
190
- For vector valued mu , first dimension must match shape of the random walk, and
190
+ For vector valued `mu` , first dimension must match shape of the random walk, and
191
191
the first element will be discarded (since there is no innovation in the first timestep)
192
- sigma: tensor
193
- sigma > 0, innovation standard deviation (only required if tau is not specified)
194
- For vector valued sigma, first dimension must match shape of the random walk, and
192
+ sigma : tensor_like of float, optional
193
+ ` sigma` > 0, innovation standard deviation (only required if ` tau` is not specified)
194
+ For vector valued ` sigma` , first dimension must match shape of the random walk, and
195
195
the first element will be discarded (since there is no innovation in the first timestep)
196
- tau: tensor
197
- tau > 0, innovation precision (only required if sigma is not specified)
198
- For vector valued tau, first dimension must match shape of the random walk, and
196
+ tau : tensor_like of float, optional
197
+ ` tau` > 0, innovation precision (only required if ` sigma` is not specified)
198
+ For vector valued ` tau` , first dimension must match shape of the random walk, and
199
199
the first element will be discarded (since there is no innovation in the first timestep)
200
- init: distribution
200
+ init : pymc.Distribution, optional
201
201
distribution for initial value (Defaults to Flat())
202
202
"""
203
203
@@ -230,7 +230,7 @@ def logp(self, x):
230
230
231
231
Parameters
232
232
----------
233
- x: numeric
233
+ x : numeric
234
234
Value for which log-probability is calculated.
235
235
236
236
Returns
@@ -250,10 +250,10 @@ def random(self, point=None, size=None):
250
250
251
251
Parameters
252
252
----------
253
- point: dict, optional
253
+ point : dict or Point , optional
254
254
Dict of variable values on which random values are to be
255
255
conditioned (uses default point if not specified).
256
- size: int, optional
256
+ size : int, optional
257
257
Desired size of random sample (returns one sample if not
258
258
specified).
259
259
0 commit comments