Skip to content

Commit c892317

Browse files
authored
Updated pymc.GaussianRandomWalk docstring (#5492)
* Updated pymc.GaussianRandomWalk docstring * Addressed review comments to changes to GWR docstring
1 parent d4ccaa8 commit c892317

File tree

1 file changed

+12
-12
lines changed

1 file changed

+12
-12
lines changed

pymc/distributions/timeseries.py

Lines changed: 12 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -185,19 +185,19 @@ class GaussianRandomWalk(distribution.Continuous):
185185
186186
Parameters
187187
----------
188-
mu: tensor
188+
mu : tensor_like of float, default 0
189189
innovation drift, defaults to 0.0
190-
For vector valued mu, first dimension must match shape of the random walk, and
190+
For vector valued `mu`, first dimension must match shape of the random walk, and
191191
the first element will be discarded (since there is no innovation in the first timestep)
192-
sigma: tensor
193-
sigma > 0, innovation standard deviation (only required if tau is not specified)
194-
For vector valued sigma, first dimension must match shape of the random walk, and
192+
sigma : tensor_like of float, optional
193+
`sigma` > 0, innovation standard deviation (only required if `tau` is not specified)
194+
For vector valued `sigma`, first dimension must match shape of the random walk, and
195195
the first element will be discarded (since there is no innovation in the first timestep)
196-
tau: tensor
197-
tau > 0, innovation precision (only required if sigma is not specified)
198-
For vector valued tau, first dimension must match shape of the random walk, and
196+
tau : tensor_like of float, optional
197+
`tau` > 0, innovation precision (only required if `sigma` is not specified)
198+
For vector valued `tau`, first dimension must match shape of the random walk, and
199199
the first element will be discarded (since there is no innovation in the first timestep)
200-
init: distribution
200+
init : pymc.Distribution, optional
201201
distribution for initial value (Defaults to Flat())
202202
"""
203203

@@ -230,7 +230,7 @@ def logp(self, x):
230230
231231
Parameters
232232
----------
233-
x: numeric
233+
x : numeric
234234
Value for which log-probability is calculated.
235235
236236
Returns
@@ -250,10 +250,10 @@ def random(self, point=None, size=None):
250250
251251
Parameters
252252
----------
253-
point: dict, optional
253+
point : dict or Point, optional
254254
Dict of variable values on which random values are to be
255255
conditioned (uses default point if not specified).
256-
size: int, optional
256+
size : int, optional
257257
Desired size of random sample (returns one sample if not
258258
specified).
259259

0 commit comments

Comments
 (0)