@@ -361,25 +361,25 @@ class AR(SymbolicDistribution):
361361
362362 Parameters
363363 ----------
364- rho: tensor_like of float
364+ rho : tensor_like of float
365365 Tensor of autoregressive coefficients. The n-th entry in the last dimension is
366366 the coefficient for the n-th lag.
367- sigma: tensor_like of float, optional
368- Standard deviation of innovation (sigma > 0). Defaults to 1. Only required if
367+ sigma : tensor_like of float, default 1
368+ Standard deviation of innovation (sigma > 0). Only required if
369369 tau is not specified.
370- tau: tensor_like of float
370+ tau : tensor_like of float, optional
371371 Precision of innovation (tau > 0).
372- constant: bool, optional
372+ constant : bool, default False
373373 Whether the first element of rho should be used as a constant term in the AR
374- process. Defaults to False
375- init_dist: unnamed distribution
376- Scalar or vector distribution for initial values. Distribution should be
377- created via the `.dist()` API, and have shape (*shape[:-1], ar_order). If not,
378- it will be automatically resized.
374+ process.
375+ init_dist : unnamed distribution
376+ Scalar or vector distribution for initial values. Unnamed refers to distributions
377+ created with the `` .dist()`` API. Distributions should have shape (*shape[:-1], ar_order).
378+ If not, it will be automatically resized.
379379
380380 .. warning:: init_dist will be cloned, rendering it independent of the one passed as input.
381381
382- ar_order: int, optional
382+ ar_order : int, optional
383383 Order of the AR process. Inferred from length of the last dimension of rho, if
384384 possible. ar_order = rho.shape[-1] if constant else rho.shape[-1] - 1
385385 steps : int, optional
0 commit comments