@@ -930,7 +930,7 @@ fig.show(config={"displayModeBar": False})
930930plot_model_evaluations(
931931 *evaluate_haversine(fiona_df.select("longitude", "latitude").to_numpy(), post_mean.values),
932932 main_title="Simple"
933- )
933+ ).show(width=1000, renderer="svg")
934934```
935935
936936# Generate 24-hour forecasts with our simple model
@@ -958,7 +958,7 @@ simple_errors, simple_cum_error, simple_mean_error = evaluate_haversine(
958958)
959959plot_model_evaluations(
960960 simple_errors, simple_cum_error, simple_mean_error, main_title="24-hour Simple"
961- )
961+ ).show(width=1000, renderer="svg")
962962```
963963
964964# Adding Deterministic Covariates/Exogenous Variables
@@ -1293,7 +1293,7 @@ fig.show(config={"displayModeBar": False})
12931293plot_model_evaluations(
12941294 *evaluate_haversine(fiona_df.select("longitude", "latitude").to_numpy(), post_mean.values),
12951295 main_title="Exogenous"
1296- )
1296+ ).show(width=1000, renderer="svg")
12971297```
12981298
12991299# Generate 24-hour forecasts with our Exogenous SSM
@@ -1343,7 +1343,9 @@ fig.show(config={"displayModeBar": False})
13431343exog_errors, exog_cum_error, exog_mean_error = evaluate_haversine(
13441344 fiona_df.select("longitude", "latitude").to_numpy()[1:], f_mean.values
13451345)
1346- plot_model_evaluations(exog_errors, exog_cum_error, exog_mean_error, main_title="24-hour Exogenous")
1346+ plot_model_evaluations(
1347+ exog_errors, exog_cum_error, exog_mean_error, main_title="24-hour Exogenous"
1348+ ).show(width=1000, renderer="svg")
13471349```
13481350
13491351# Add B-Splines
@@ -1420,7 +1422,7 @@ fig.update_layout(
14201422 yaxis=dict(title="Latitude", ticksuffix="°", range=(14, 65)),
14211423 title=dict(text="B-Spline Knot Locations"),
14221424)
1423- fig.show(config={"displayModeBar": False} )
1425+ fig.show(width=1000, renderer="svg" )
14241426```
14251427
14261428Next, we need to create the basis functions over the defined variable space knot locations for each variable.
@@ -1730,7 +1732,7 @@ fig.show(config={"displayModeBar": False})
17301732plot_model_evaluations(
17311733 *evaluate_haversine(fiona_df.select("longitude", "latitude").to_numpy(), post_mean.values),
17321734 main_title="B-Spline"
1733- )
1735+ ).show(width=1000, renderer="svg")
17341736```
17351737
17361738Our 24-hour (4-period) forecasts, look pretty good. So far, this follows the true trajectory during the mid-section the best.
@@ -1768,7 +1770,7 @@ spline_errors, spline_cum_error, spline_mean_error = evaluate_haversine(
17681770)
17691771plot_model_evaluations(
17701772 spline_errors, spline_cum_error, spline_mean_error, main_title="24-hour B-Spline"
1771- )
1773+ ).show(width=1000, renderer="svg")
17721774```
17731775
17741776# Closing Remarks
@@ -1807,7 +1809,9 @@ fig.update_layout(
18071809 title=f"24-hour Forecast Model Comparisons",
18081810 xaxis=dict(title="Time Period"),
18091811 yaxis=dict(title="Miles Away from Actual"),
1812+ width=1000,
18101813)
1814+ fig.show(renderer="svg")
18111815```
18121816
18131817# Authors
0 commit comments