Skip to content

API: Allow groupby's by to take column and index names [WIP] #7033

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
33 changes: 33 additions & 0 deletions pandas/core/groupby.py
Original file line number Diff line number Diff line change
Expand Up @@ -1917,8 +1917,15 @@ def _get_grouper(obj, key=None, axis=0, level=None, sort=True):
any_callable = any(callable(g) or isinstance(g, dict) for g in keys)
any_arraylike = any(isinstance(g, (list, tuple, Series, np.ndarray))
for g in keys)
# sugar for df.reset_index().groupby(['a', 'b']) where b was in index_names
from_col, from_idx, from_both = _from_index_and_columns(obj, keys)

try:
if from_idx and from_col:
# check the drop part...
obj = obj.reset_index(level=list(from_idx)).reset_index(drop=True)
group_axis = obj._get_axis(axis)

if isinstance(obj, DataFrame):
all_in_columns = all(g in obj.columns for g in keys)
else:
Expand All @@ -1940,6 +1947,7 @@ def _get_grouper(obj, key=None, axis=0, level=None, sort=True):

groupings = []
exclusions = []

for i, (gpr, level) in enumerate(zip(keys, levels)):
name = None
try:
Expand Down Expand Up @@ -1969,6 +1977,31 @@ def _get_grouper(obj, key=None, axis=0, level=None, sort=True):
return grouper, exclusions, obj


def _from_index_and_columns(obj, keys):
"""
keys is already listlike
"""
not_all_string = not all(isinstance(g, compat.string_types) for g in keys)
not_df = not isinstance(obj, DataFrame)
if not_all_string or not_df:
# TODO: Handle mix of callables and strings.
return None, None, None
ks = set(keys)
from_idx = ks & set(obj.index.names)
from_col = ks & set(obj.columns)

# check for ambiguity:
from_both = from_idx & from_col
if from_both:
from warnings import warn
msg = ("Found {0} in both the columns and index labels. "
"Grouping by the columns".format(from_both),)
warn(msg, FutureWarning)

# don't need to do anything if the only ones from either are in both
return from_col, from_idx - from_both, from_both


def _is_label_like(val):
return isinstance(val, compat.string_types) or np.isscalar(val)

Expand Down
53 changes: 52 additions & 1 deletion pandas/tests/test_groupby.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,8 @@
from pandas.core.common import rands
from pandas.core.api import Categorical, DataFrame
from pandas.core.groupby import (SpecificationError, DataError,
_nargsort, _lexsort_indexer)
_nargsort, _lexsort_indexer,
_from_index_and_columns)
from pandas.core.series import Series
from pandas.util.testing import (assert_panel_equal, assert_frame_equal,
assert_series_equal, assert_almost_equal,
Expand Down Expand Up @@ -4168,6 +4169,56 @@ def test_nargsort(self):
expected = list(range(5)) + list(range(105, 110)) + list(range(104, 4, -1))
assert_equal(result, expected)

def test_by_index_cols(self):
df = DataFrame([[1, 2, 'x', 'a', 'a'],
[2, 3, 'x', 'a', 'b'],
[3, 4, 'x', 'b', 'a'],
[4, 5, 'y', 'b', 'b']],
columns=['c1', 'c2', 'g1', 'i1', 'i2'])
df = df.set_index(['i1', 'i2'])
df.index.set_names(['i1', 'g1'], inplace=True)
result = df.groupby(by=['g1', 'i1']).mean()
idx = MultiIndex.from_tuples([('x', 'a'), ('x', 'b'), ('y', 'b')],
names=['g1', 'i1'])
expected = DataFrame([[1.5, 2.5], [1, 4], [1, 5]],
index=idx, columns=['c1', 'c2'])
assert_frame_equal(result, expected)

with tm.assert_produces_warning(FutureWarning):
result = df.groupby('g1').mean()
expected = DataFrame([[2, 3], [4, 5]],
index=['x', 'y'], columns=['c1', 'c2'])
expected.index.set_names(['g1'], inplace=True)
assert_frame_equal(result, expected)

def test_from_index_and_columns(self):
# allowing by to spread across index and col names GH #5677
df = DataFrame([[1, 2, 3, 4]], columns=['c1', 'c2', 'i1', 'i2'])
df = df.set_index(['i1', 'i2'])

keys = ['c1']
from_col, from_idx, from_both = _from_index_and_columns(df, keys)
self.assertEqual(from_col, set(['c1']))
self.assertEqual(from_idx, set([]))
self.assertEqual(from_both, set([]))

keys = ['c1', 'i1']
from_col, from_idx, from_both = _from_index_and_columns(df, keys)
self.assertEqual(from_col, set(['c1']))
self.assertEqual(from_idx, set(['i1']))
self.assertEqual(from_both, set([]))

df.index.names = ['i1', 'c1']
keys = ['c1', 'i1']
with tm.assert_produces_warning(FutureWarning):
from_col, from_idx, from_both = _from_index_and_columns(df, keys)
self.assertEqual(from_col, set(['c1']))
self.assertEqual(from_idx, set(['i1']))
self.assertEqual(from_both, set(['c1']))

res = _from_index_and_columns(df['c1'], 'i1')
self.assertEqual(res, (None, None, None))

def assert_fp_equal(a, b):
assert (np.abs(a - b) < 1e-12).all()

Expand Down