Skip to content

BUG: Avoid RangeIndex conversion in read_csv if dtype is specified #59316

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Jul 30, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
39 changes: 27 additions & 12 deletions pandas/io/parsers/base_parser.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
from copy import copy
import csv
from enum import Enum
import itertools
from typing import (
TYPE_CHECKING,
Any,
Expand Down Expand Up @@ -271,7 +272,7 @@ def _maybe_make_multi_index_columns(

@final
def _make_index(
self, data, alldata, columns, indexnamerow: list[Scalar] | None = None
self, alldata, columns, indexnamerow: list[Scalar] | None = None
) -> tuple[Index | None, Sequence[Hashable] | MultiIndex]:
index: Index | None
if isinstance(self.index_col, list) and len(self.index_col):
Expand Down Expand Up @@ -326,7 +327,11 @@ def _agg_index(self, index) -> Index:
converters = self._clean_mapping(self.converters)
clean_dtypes = self._clean_mapping(self.dtype)

for i, arr in enumerate(index):
if self.index_names is not None:
names: Iterable = self.index_names
else:
names = itertools.cycle([None])
for i, (arr, name) in enumerate(zip(index, names)):
if self._should_parse_dates(i):
arr = date_converter(
arr,
Expand Down Expand Up @@ -369,12 +374,17 @@ def _agg_index(self, index) -> Index:
arr, _ = self._infer_types(
arr, col_na_values | col_na_fvalues, cast_type is None, try_num_bool
)
arrays.append(arr)

names = self.index_names
index = ensure_index_from_sequences(arrays, names)
if cast_type is not None:
# Don't perform RangeIndex inference
idx = Index(arr, name=name, dtype=cast_type)
else:
idx = ensure_index_from_sequences([arr], [name])
arrays.append(idx)

return index
if len(arrays) == 1:
return arrays[0]
else:
return MultiIndex.from_arrays(arrays)

@final
def _set_noconvert_dtype_columns(
Expand Down Expand Up @@ -704,12 +714,11 @@ def _get_empty_meta(
dtype_dict: defaultdict[Hashable, Any]
if not is_dict_like(dtype):
# if dtype == None, default will be object.
default_dtype = dtype or object
dtype_dict = defaultdict(lambda: default_dtype)
dtype_dict = defaultdict(lambda: dtype)
else:
dtype = cast(dict, dtype)
dtype_dict = defaultdict(
lambda: object,
lambda: None,
{columns[k] if is_integer(k) else k: v for k, v in dtype.items()},
)

Expand All @@ -726,8 +735,14 @@ def _get_empty_meta(
if (index_col is None or index_col is False) or index_names is None:
index = default_index(0)
else:
data = [Series([], dtype=dtype_dict[name]) for name in index_names]
index = ensure_index_from_sequences(data, names=index_names)
# TODO: We could return default_index(0) if dtype_dict[name] is None
data = [
Index([], name=name, dtype=dtype_dict[name]) for name in index_names
]
if len(data) == 1:
index = data[0]
else:
index = MultiIndex.from_arrays(data)
index_col.sort()

for i, n in enumerate(index_col):
Expand Down
2 changes: 1 addition & 1 deletion pandas/io/parsers/c_parser_wrapper.py
Original file line number Diff line number Diff line change
Expand Up @@ -338,7 +338,7 @@ def read(
data = {k: v for k, (i, v) in zip(names, data_tups)}

date_data = self._do_date_conversions(names, data)
index, column_names = self._make_index(date_data, alldata, names)
index, column_names = self._make_index(alldata, names)

return index, column_names, date_data

Expand Down
4 changes: 1 addition & 3 deletions pandas/io/parsers/python_parser.py
Original file line number Diff line number Diff line change
Expand Up @@ -312,9 +312,7 @@ def read(
conv_data = self._convert_data(data)
conv_data = self._do_date_conversions(columns, conv_data)

index, result_columns = self._make_index(
conv_data, alldata, columns, indexnamerow
)
index, result_columns = self._make_index(alldata, columns, indexnamerow)

return index, result_columns, conv_data

Expand Down
18 changes: 17 additions & 1 deletion pandas/tests/io/parser/dtypes/test_dtypes_basic.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,8 @@
"ignore:Passing a BlockManager to DataFrame:DeprecationWarning"
)

xfail_pyarrow = pytest.mark.usefixtures("pyarrow_xfail")


@pytest.mark.parametrize("dtype", [str, object])
@pytest.mark.parametrize("check_orig", [True, False])
Expand Down Expand Up @@ -607,6 +609,7 @@ def test_string_inference_object_dtype(all_parsers, dtype):
tm.assert_frame_equal(result, expected)


@xfail_pyarrow
def test_accurate_parsing_of_large_integers(all_parsers):
# GH#52505
data = """SYMBOL,MOMENT,ID,ID_DEAL
Expand All @@ -617,7 +620,7 @@ def test_accurate_parsing_of_large_integers(all_parsers):
AMZN,20230301181139587,2023552585717889759,2023552585717263360
MSFT,20230301181139587,2023552585717889863,2023552585717263361
NVDA,20230301181139587,2023552585717889827,2023552585717263361"""
orders = pd.read_csv(StringIO(data), dtype={"ID_DEAL": pd.Int64Dtype()})
orders = all_parsers.read_csv(StringIO(data), dtype={"ID_DEAL": pd.Int64Dtype()})
assert len(orders.loc[orders["ID_DEAL"] == 2023552585717263358, "ID_DEAL"]) == 1
assert len(orders.loc[orders["ID_DEAL"] == 2023552585717263359, "ID_DEAL"]) == 1
assert len(orders.loc[orders["ID_DEAL"] == 2023552585717263360, "ID_DEAL"]) == 2
Expand All @@ -639,3 +642,16 @@ def test_dtypes_with_usecols(all_parsers):
values = ["1", "4"]
expected = DataFrame({"a": pd.Series(values, dtype=object), "c": [3, 6]})
tm.assert_frame_equal(result, expected)


def test_index_col_with_dtype_no_rangeindex(all_parsers):
data = StringIO("345.5,519.5,0\n519.5,726.5,1")
result = all_parsers.read_csv(
data,
header=None,
names=["start", "stop", "bin_id"],
dtype={"start": np.float32, "stop": np.float32, "bin_id": np.uint32},
index_col="bin_id",
).index
expected = pd.Index([0, 1], dtype=np.uint32, name="bin_id")
tm.assert_index_equal(result, expected)