Skip to content

DOC: Update pandas.cut docstring #20104

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 7 commits into from
Mar 16, 2018
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
154 changes: 109 additions & 45 deletions pandas/core/reshape/tile.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,69 +26,133 @@
def cut(x, bins, right=True, labels=None, retbins=False, precision=3,
include_lowest=False):
"""
Return indices of half-open bins to which each value of `x` belongs.
Bin values into discrete intervals.

Use `cut` when you need to segment and sort data values into bins. This
function is also useful for going from a continuous variable to a
categorical variable. For example, `cut` could convert ages to groups of
age ranges. Supports binning into an equal number of bins, or a
pre-specified array of bins.

Parameters
----------
x : array-like
Input array to be binned. It has to be 1-dimensional.
bins : int, sequence of scalars, or IntervalIndex
If `bins` is an int, it defines the number of equal-width bins in the
range of `x`. However, in this case, the range of `x` is extended
by .1% on each side to include the min or max values of `x`. If
`bins` is a sequence it defines the bin edges allowing for
non-uniform bin width. No extension of the range of `x` is done in
this case.
right : bool, optional
Indicates whether the bins include the rightmost edge or not. If
right == True (the default), then the bins [1,2,3,4] indicate
(1,2], (2,3], (3,4].
labels : array or boolean, default None
Used as labels for the resulting bins. Must be of the same length as
the resulting bins. If False, return only integer indicators of the
bins.
retbins : bool, optional
Whether to return the bins or not. Can be useful if bins is given
The input array to be binned. Must be 1-dimensional.
bins : int, sequence of scalars, or pandas.IntervalIndex
The criteria to bin by.

* int : Defines the number of equal-width bins in the range of `x`. The
range of `x` is extended by .1% on each side to include the minimum
and maximum values of `x`.
* sequence of scalars : Defines the bin edges allowing for non-uniform
width. No extension of the range of `x` is done.
* IntervalIndex : Defines the exact bins to be used.

right : bool, default True
Indicates whether `bins` includes the rightmost edge or not. If
``right == True`` (the default), then the `bins` ``[1, 2, 3, 4]``
indicate (1,2], (2,3], (3,4]. This argument is ignored when
`bins` is an IntervalIndex.
labels : array or bool, optional
Specifies the labels for the returned bins. Must be the same length as
the resulting bins. If False, returns only integer indicators of the
bins. This affects the type of the output container (see below).
This argument is ignored when `bins` is an IntervalIndex.
retbins : bool, default False
Whether to return the bins or not. Useful when bins is provided
as a scalar.
precision : int, optional
The precision at which to store and display the bins labels
include_lowest : bool, optional
precision : int, default 3
The precision at which to store and display the bins labels.
include_lowest : bool, default False
Whether the first interval should be left-inclusive or not.

Returns
-------
out : Categorical or Series or array of integers if labels is False
The return type (Categorical or Series) depends on the input: a Series
of type category if input is a Series else Categorical. Bins are
represented as categories when categorical data is returned.
bins : ndarray of floats
Returned only if `retbins` is True.
out : pandas.Categorical, Series, or ndarray
An array-like object representing the respective bin for each value
of `x`. The type depends on the value of `labels`.

Notes
-----
The `cut` function can be useful for going from a continuous variable to
a categorical variable. For example, `cut` could convert ages to groups
of age ranges.
* True (default) : returns a Series for Series `x` or a
pandas.Categorical for all other inputs. The values stored within
are Interval dtype.

Any NA values will be NA in the result. Out of bounds values will be NA in
the resulting Categorical object
* sequence of scalars : returns a Series for Series `x` or a
pandas.Categorical for all other inputs. The values stored within
are whatever the type in the sequence is.

* False : returns an ndarray of integers.

bins : numpy.ndarray or IntervalIndex.
The computed or specified bins. Only returned when `retbins=True`.
For scalar or sequence `bins`, this is an ndarray with the computed
bins. For an IntervalIndex `bins`, this is equal to `bins`.

See Also
--------
qcut : Discretize variable into equal-sized buckets based on rank
or based on sample quantiles.
pandas.Categorical : Array type for storing data that come from a
fixed set of values.
Series : One-dimensional array with axis labels (including time series).
pandas.IntervalIndex : Immutable Index implementing an ordered,
sliceable set.

Notes
-----
Any NA values will be NA in the result. Out of bounds values will be NA in
the resulting Series or pandas.Categorical object.

Examples
--------
>>> pd.cut(np.array([.2, 1.4, 2.5, 6.2, 9.7, 2.1]), 3, retbins=True)
Discretize into three equal-sized bins.

>>> pd.cut(np.array([1, 7, 5, 4, 6, 3]), 3)
... # doctest: +ELLIPSIS
([(0.19, 3.367], (0.19, 3.367], (0.19, 3.367], (3.367, 6.533], ...
Categories (3, interval[float64]): [(0.19, 3.367] < (3.367, 6.533] ...
[(0.994, 3.0], (5.0, 7.0], (3.0, 5.0], (3.0, 5.0], (5.0, 7.0], ...
Categories (3, interval[float64]): [(0.994, 3.0] < (3.0, 5.0] ...

>>> pd.cut(np.array([.2, 1.4, 2.5, 6.2, 9.7, 2.1]),
... 3, labels=["good", "medium", "bad"])
... # doctest: +SKIP
[good, good, good, medium, bad, good]
Categories (3, object): [good < medium < bad]
>>> pd.cut(np.array([1, 7, 5, 4, 6, 3]), 3, retbins=True)
... # doctest: +ELLIPSIS
([(0.994, 3.0], (5.0, 7.0], (3.0, 5.0], (3.0, 5.0], (5.0, 7.0], ...
Categories (3, interval[float64]): [(0.994, 3.0] < (3.0, 5.0] ...
array([0.994, 3. , 5. , 7. ]))

Discovers the same bins, but assign them specific labels. Notice that
the returned Categorical's categories are `labels` and is ordered.

>>> pd.cut(np.array([1, 7, 5, 4, 6, 3]),
... 3, labels=["bad", "medium", "good"])
[bad, good, medium, medium, good, bad]
Categories (3, object): [bad < medium < good]

>>> pd.cut(np.ones(5), 4, labels=False)
array([1, 1, 1, 1, 1])
``labels=False`` implies you just want the bins back.

>>> pd.cut([0, 1, 1, 2], bins=4, labels=False)
array([0, 1, 1, 3])

Passing a Series as an input returns a Series with categorical dtype:

>>> s = pd.Series(np.array([2, 4, 6, 8, 10]),
... index=['a', 'b', 'c', 'd', 'e'])
>>> pd.cut(s, 3)
... # doctest: +ELLIPSIS
a (1.992, 4.667]
b (1.992, 4.667]
c (4.667, 7.333]
d (7.333, 10.0]
e (7.333, 10.0]
dtype: category
Categories (3, interval[float64]): [(1.992, 4.667] < (4.667, ...

Passing an IntervalIndex for `bins` results in those categories exactly.
Notice that values not covered by the IntervalIndex are set to NaN. 0
is to the left of the first bin (which is closed on the right), and 1.5
falls between two bins.

>>> bins = pd.IntervalIndex.from_tuples([(0, 1), (2, 3), (4, 5)])
>>> pd.cut([0, 0.5, 1.5, 2.5, 4.5], bins)
[NaN, (0, 1], NaN, (2, 3], (4, 5]]
Categories (3, interval[int64]): [(0, 1] < (2, 3] < (4, 5]]
"""
# NOTE: this binning code is changed a bit from histogram for var(x) == 0

Expand Down