Skip to content

TST: 32bit compat for interval get_indexer #16006

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Apr 15, 2017
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
26 changes: 13 additions & 13 deletions pandas/tests/indexes/test_interval.py
Original file line number Diff line number Diff line change
Expand Up @@ -413,24 +413,24 @@ def test_get_loc_interval(self):

def test_get_indexer(self):
actual = self.index.get_indexer([-1, 0, 0.5, 1, 1.5, 2, 3])
expected = np.array([-1, -1, 0, 0, 1, 1, -1], dtype='int64')
expected = np.array([-1, -1, 0, 0, 1, 1, -1], dtype='intp')
self.assert_numpy_array_equal(actual, expected)

actual = self.index.get_indexer(self.index)
expected = np.array([0, 1], dtype='int64')
expected = np.array([0, 1], dtype='intp')
self.assert_numpy_array_equal(actual, expected)

index = IntervalIndex.from_breaks([0, 1, 2], closed='left')
actual = index.get_indexer([-1, 0, 0.5, 1, 1.5, 2, 3])
expected = np.array([-1, 0, 0, 1, 1, -1, -1], dtype='int64')
expected = np.array([-1, 0, 0, 1, 1, -1, -1], dtype='intp')
self.assert_numpy_array_equal(actual, expected)

actual = self.index.get_indexer(index[:1])
expected = np.array([0], dtype='int64')
expected = np.array([0], dtype='intp')
self.assert_numpy_array_equal(actual, expected)

actual = self.index.get_indexer(index)
expected = np.array([-1, 1], dtype='int64')
expected = np.array([-1, 1], dtype='intp')
self.assert_numpy_array_equal(actual, expected)

def test_get_indexer_subintervals(self):
Expand All @@ -439,21 +439,21 @@ def test_get_indexer_subintervals(self):
# return indexers for wholly contained subintervals
target = IntervalIndex.from_breaks(np.linspace(0, 2, 5))
actual = self.index.get_indexer(target)
expected = np.array([0, 0, 1, 1], dtype='int64')
expected = np.array([0, 0, 1, 1], dtype='p')
self.assert_numpy_array_equal(actual, expected)

target = IntervalIndex.from_breaks([0, 0.67, 1.33, 2])
actual = self.index.get_indexer(target)
expected = np.array([0, 0, 1, 1], dtype='int64')
expected = np.array([0, 0, 1, 1], dtype='intp')
self.assert_numpy_array_equal(actual, expected)

actual = self.index.get_indexer(target[[0, -1]])
expected = np.array([0, 1], dtype='int64')
expected = np.array([0, 1], dtype='intp')
self.assert_numpy_array_equal(actual, expected)

target = IntervalIndex.from_breaks([0, 0.33, 0.67, 1], closed='left')
actual = self.index.get_indexer(target)
expected = np.array([0, 0, 0], dtype='int64')
expected = np.array([0, 0, 0], dtype='intp')
self.assert_numpy_array_equal(actual, expected)

def test_contains(self):
Expand Down Expand Up @@ -505,7 +505,7 @@ def test_non_contiguous(self):
index = IntervalIndex.from_tuples([(0, 1), (2, 3)])
target = [0.5, 1.5, 2.5]
actual = index.get_indexer(target)
expected = np.array([0, -1, 1], dtype='int64')
expected = np.array([0, -1, 1], dtype='intp')
self.assert_numpy_array_equal(actual, expected)

self.assertNotIn(1.5, index)
Expand Down Expand Up @@ -655,7 +655,7 @@ def test_datetime(self):

target = pd.date_range('1999-12-31T12:00', periods=7, freq='12H')
actual = idx.get_indexer(target)
expected = np.array([-1, -1, 0, 0, 1, 1, -1], dtype='int64')
expected = np.array([-1, -1, 0, 0, 1, 1, -1], dtype='intp')
self.assert_numpy_array_equal(actual, expected)

def test_append(self):
Expand Down Expand Up @@ -779,9 +779,9 @@ def test_get_loc_closed(self):
np.array([0], dtype='int64'))

def test_get_indexer_closed(self):
x = np.arange(1000, dtype='int64')
x = np.arange(1000, dtype='intp')
found = x
not_found = (-1 * np.ones(1000)).astype('int64')
not_found = (-1 * np.ones(1000)).astype('intp')
for leaf_size in [1, 10, 100, 10000]:
for closed in ['left', 'right', 'both', 'neither']:
tree = IntervalTree(x, x + 0.5, closed=closed,
Expand Down