Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import pandas as pd
import numpy as np
from io import BytesIO
from datetime import datetime
df = pd.DataFrame({'a': ['abc', np.nan, datetime.now(), 'def']})
out = BytesIO()
df.to_excel(out, index=False)
df_openpyxl = pd.read_excel(out, engine='openpyxl')
df_calamine = pd.read_excel(out, engine='calamine')
In [49]: df_openpyxl['a'].map(type)
Out[49]:
0 <class 'str'>
1 <class 'float'>
2 <class 'datetime.datetime'>
3 <class 'str'>
Name: a, dtype: object
In [50]: df_calamine['a'].map(type)
Out[50]:
0 <class 'str'>
1 <class 'float'>
2 <class 'pandas._libs.tslibs.timestamps.Timesta...
3 <class 'str'>
Name: a, dtype: object
Issue Description
When trying to read an excel file that has mixed formats, using the calamine engine - results in an object dtype column where the value is pandas._libs.tslibs.timestamps.Timestamp
and pandas._libs.tslibs.timedeltas.Timedelta
whereas with the openpyxl engine, these values are datetime.datetime
and datetime.timedelta
instead.
The difference seems to be because the calamine implementation explicitly sets pd.Timestamp/pd.Timedelta
data types
pandas/pandas/io/excel/_calamine.py
Lines 109 to 115 in 79067a7
whereas the openpyxl implementation uses whatever the library returns.
Expected Behavior
The individual item data types should match
Installed Versions
INSTALLED VERSIONS
commit : dd87dd3
python : 3.10.14
python-bits : 64
OS : Linux
OS-release : 4.19.128-microsoft-standard
Version : #1 SMP Tue Jun 23 12:58:10 UTC 2020
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : C.UTF-8
LOCALE : en_US.UTF-8
pandas : 3.0.0.dev0+1113.gdd87dd3ef6
numpy : 1.26.4
pytz : 2024.1
dateutil : 2.9.0
pip : 24.0
Cython : 3.0.10
sphinx : 7.3.7
IPython : 8.25.0
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : 4.12.3
blosc : None
bottleneck : 1.3.8
fastparquet : 2024.5.0
fsspec : 2024.6.0
html5lib : 1.1
hypothesis : 6.103.0
gcsfs : 2024.6.0
jinja2 : 3.1.4
lxml.etree : 5.2.2
matplotlib : 3.8.4
numba : 0.59.1
numexpr : 2.10.0
odfpy : None
openpyxl : 3.1.2
psycopg2 : 2.9.9
pymysql : 1.4.6
pyarrow : 16.1.0
pyreadstat : 1.2.7
pytest : 8.2.1
python-calamine : None
pyxlsb : 1.0.10
s3fs : 2024.6.0
scipy : 1.13.1
sqlalchemy : 2.0.30
tables : 3.9.2
tabulate : 0.9.0
xarray : 2024.5.0
xlrd : 2.0.1
xlsxwriter : 3.1.9
zstandard : 0.19.0
tzdata : 2024.1
qtpy : None
pyqt5 : None