PERF: Series.value_counts() in aggregation function is slower than collections.Counter() #49728
Closed
2 of 3 tasks
Labels
Needs Info
Clarification about behavior needed to assess issue
Performance
Memory or execution speed performance
Uh oh!
There was an error while loading. Please reload this page.
Pandas version checks
I have checked that this issue has not already been reported.
I have confirmed this issue exists on the latest version of pandas.
I have confirmed this issue exists on the main branch of pandas.
Reproducible Example
Series.value_counts() are slower especially if it counts for a small size of iterable elements.
Case1: value_counts() for counting small iterable elements
The picture below is the result of simulation 1 where I compared the speed of counting values for Series.value_counts() and collections.Counter(). In this simulation, I measured time for counting iterables of variable sizes ($N \in 10^1 - 10^7$ ) using Series.value_counts() and collections.Counter(). It shows Series.value_counts() comes to be slower if the $N < 10^3$ .
Source code for simulation 1:
Case2: repeatedly calls value_counts() in aggregation functions
That also comes to be issue when using in aggregation functions. I run another simulation to compare the execution time for Series.value_counts() and collections.Counter() 2. This time I used counting methods in an aggregate function. It also shows Series.value_counts() is 5 times slower than collections.Counter() method.
source code for simulation 2:
Is this an expected performance for value_counts()? If it isn't performance improvement should be cared.
Installed Versions
pandas : 1.5.1
numpy : 1.23.4
pytz : 2022.1
dateutil : 2.8.2
setuptools : 59.6.0
pip : 22.0.2
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.0.3
IPython : 8.6.0
pandas_datareader: None
bs4 : 4.11.1
bottleneck : None
brotli : None
fastparquet : 0.8.3
fsspec : 2022.10.0
gcsfs : None
matplotlib : 3.6.0
numba : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : None
snappy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
zstandard : None
tzdata : None
Prior Performance
No response
Footnotes
https://gist.github.com/bilzard/558f07a7d13f62b4222a92446704cbe5 ↩
https://gist.github.com/bilzard/08eb013b7a65e35e7bc8f0768c4bd147 ↩
The text was updated successfully, but these errors were encountered: