Skip to content

BUG: Pandas's ujson module incorrectly returns None when it reads NaN. #46627

Open
@Erotemic

Description

@Erotemic

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

import pandas as pd
    import io

    # There is corner case in pandas ujson library.

    # Normally it looks like NaNs are read correctly

    f1 = io.StringIO('[NaN]')
    df1 = pd.read_json(f1)
    print(df1)

    # But that is only because pandas sees a list of floaty things and converts
    # None to a floating NaN

    # If we add an object so the list is no longer floaty, we can see
    # that the NaN is read as a None.
    f2 = io.StringIO('[NaN, {}, null, 1]')
    df2 = pd.read_json(f2)
    print(df2)

    # The minimal bug can be demoed using the ujson vendored library
    from  pandas._libs import json as pd_ujson
    loaded = pd_ujson.loads('[NaN]')
    print('loaded = {!r}'.format(loaded))

Issue Description

The above script has comments explaining it. The main issue is the ujson parser in pandas generates a null when it reads a NaN.

This is a bug, albeit minor because the only way you would ever notice is if you loaded a json object with nans and non-numeric members.

This is seen via the output of the above MWE:


# It seems like pandas reads Nones correctly
    0
0 NaN


# But it actually doesn't
      0
0  None
1    {}


# Underlying ujson parser always replaces NaNs with Nones
2  None
3     1
loaded = [None]

Expected Behavior

Instead of emiting a None, the ujson parser should emit a Py_NaN when it reads nan. I have already fixed this in ujson itself, and I will submit a PR fixing it here.

Installed Versions

INSTALLED VERSIONS ------------------ commit : 4bfe3d0 python : 3.10.1.final.0 python-bits : 64 OS : Linux OS-release : 5.13.0-39-generic Version : #44-Ubuntu SMP Thu Mar 24 15:35:05 UTC 2022 machine : x86_64 processor : byteorder : little LC_ALL : None LANG : C.UTF-8 LOCALE : en_US.UTF-8

pandas : 1.4.2
numpy : 1.22.3
pytz : 2022.1
dateutil : 2.8.2
pip : 21.2.4
setuptools : 57.5.0
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : 8.2.0
pandas_datareader: None
bs4 : None
bottleneck : None
brotli : None
fastparquet : None
fsspec : None
gcsfs : None
markupsafe : None
matplotlib : None
numba : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : None
snappy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
zstandard : None

Metadata

Metadata

Assignees

No one assigned

    Labels

    BugIO JSONread_json, to_json, json_normalizeMissing-datanp.nan, pd.NaT, pd.NA, dropna, isnull, interpolate

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions