Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
from datetime import datetime
from pandas.core.tools.datetimes import guess_datetime_format
my_date_str = '2022-JAN-14'
my_date = datetime(2022,1,14,0,0)
fmt = '%Y-%b-%d'
# this is a valid format...
assert datetime.strptime(my_date_str,fmt)==my_date
# ...albeit not guessed by pandas
assert guess_datetime_format(my_date) is not None
Issue Description
It appears that pandas
utils do not guess some valid datetime types.
This hits the performance of the casting method pd.to_datetime
, which falls back to inefficient code paths without a correctly guessed format. More precisely, the module pandas.core.tools.datetimes
chooses the fast-track method _to_datetime_with_format
when the format is guessed and the generic objects_to_datetime64ns
when the guess fails.
Expected Behavior
guess_datetime_format(my_date)
matches fmt
Installed Versions
INSTALLED VERSIONS
commit : 66e3805
python : 3.8.10.final.0
python-bits : 64
OS : Linux
OS-release : 5.4.0-1056-azure
Version : #58~18.04.1-Ubuntu SMP Wed Jul 28 23:14:18 UTC 2021
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : C.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.3.5
numpy : 1.21.5
pytz : 2021.3
dateutil : 2.8.2
pip : 21.1.1
setuptools : 56.0.0
Cython : None
pytest : 6.2.5
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : 1.1
pymysql : None
psycopg2 : 2.9.1 (dt dec pq3 ext lo64)
jinja2 : None
IPython : 7.30.1
pandas_datareader: None
bs4 : None
bottleneck : None
fsspec : 2022.01.0
fastparquet : 0.7.2
gcsfs : None
matplotlib : 3.5.1
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 3.0.0
pyxlsb : None
s3fs : None
scipy : 1.7.3
sqlalchemy : 1.4.29
tables : None
tabulate : 0.8.9
xarray : None
xlrd : None
xlwt : None
numba : None