-
-
Notifications
You must be signed in to change notification settings - Fork 18.7k
Closed
Labels
CategoricalCategorical Data TypeCategorical Data TypeNeeds TestsUnit test(s) needed to prevent regressionsUnit test(s) needed to prevent regressionsgood first issue
Milestone
Description
Code Sample, a copy-pastable example if possible
>>> s = pd.Series(["A","A","B","B","C"],dtype='category')
>>> s.dtype
CategoricalDtype(categories=['A', 'B', 'C'], ordered=False)
>>> s.where(s!="C", s)
0 A
1 A
2 B
3 B
4 C
dtype: object
>>> s2 = pd.Series(range(5))
>>> s2.dtype
dtype('int64')
>>> s2.where(s2<3,s2+3)
0 0
1 1
2 2
3 6
4 7
dtype: int64
Problem description
Categories are dropped when using the pd.Series.where
method. This increases memory usage for categorical data by making large temporaries and increases the noisiness of code as the type must be reinforced after the statement.
Expected Output
>>> s.where(s!="C", s).dtype
CategoricalDtype(categories=['A', 'B', 'C'], ordered=False)
Output of pd.show_versions()
Is the one in the ubuntu repos:
>>> pd.show_versions()
INSTALLED VERSIONS
------------------
commit: None
python: 3.5.2.final.0
python-bits: 64
OS: Linux
OS-release: 4.4.0-43-Microsoft
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: en_US.UTF-8
pandas: 0.21.0
pytest: None
pip: 9.0.1
setuptools: 20.7.0
Cython: None
numpy: 1.13.3
scipy: 1.0.0
pyarrow: None
xarray: None
IPython: 6.2.1
sphinx: None
patsy: None
dateutil: 2.6.1
pytz: 2017.3
blosc: None
bottleneck: None
tables: None
numexpr: None
feather: None
matplotlib: None
openpyxl: None
xlrd: 1.1.0
xlwt: None
xlsxwriter: None
lxml: None
bs4: None
html5lib: 1.0b10
sqlalchemy: None
pymysql: None
psycopg2: None
jinja2: 2.8
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: None
Metadata
Metadata
Assignees
Labels
CategoricalCategorical Data TypeCategorical Data TypeNeeds TestsUnit test(s) needed to prevent regressionsUnit test(s) needed to prevent regressionsgood first issue