Skip to content

to_timedelta rounds to microseconds unless unit is us or ns #17221

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
jdmarble opened this issue Aug 10, 2017 · 1 comment
Closed

to_timedelta rounds to microseconds unless unit is us or ns #17221

jdmarble opened this issue Aug 10, 2017 · 1 comment
Labels
Duplicate Report Duplicate issue or pull request Timedelta Timedelta data type

Comments

@jdmarble
Copy link

Code Sample

>>> pd.to_timedelta(0.123_456_789, unit='s').components
Components(days=0, hours=0, minutes=0, seconds=0, milliseconds=123, microseconds=457, nanoseconds=0)
>>> pd.to_timedelta(123.456_789, unit='ms').components
Components(days=0, hours=0, minutes=0, seconds=0, milliseconds=123, microseconds=457, nanoseconds=0)
>>> pd.to_timedelta(123_456.789, unit='us').components
Components(days=0, hours=0, minutes=0, seconds=0, milliseconds=123, microseconds=456, nanoseconds=789)
>>> pd.to_timedelta(123_456_789.0, unit='ns').components
Components(days=0, hours=0, minutes=0, seconds=0, milliseconds=123, microseconds=456, nanoseconds=789)

Problem description

I have an array of floats that represent the number of seconds since a reference time with (roughly) nanosecond precision. I want to convert to a timedelta series, but this rounds off the nanoseconds. I can work around the behavior with something like the following:

>>> pd.to_timedelta(array_seconds * 1_000_000, unit='us')

Expected Output

>>> pd.to_timedelta(0.123_456_789, unit='s').components
Components(days=0, hours=0, minutes=0, seconds=0, milliseconds=123, microseconds=456, nanoseconds=789)
>>> pd.to_timedelta(123.456_789, unit='ms').components
Components(days=0, hours=0, minutes=0, seconds=0, milliseconds=123, microseconds=456, nanoseconds=789)

Output of pd.show_versions()

pd.show_versions()
INSTALLED VERSIONS

commit: None
python: 3.6.1.final.0
python-bits: 64
OS: Windows
OS-release: 10
machine: AMD64
processor: Intel64 Family 6 Model 94 Stepping 3, GenuineIntel
byteorder: little
LC_ALL: None
LANG: None
LOCALE: None.None
pandas: 0.20.1
pytest: 3.0.7
pip: 9.0.1
setuptools: 27.2.0
Cython: 0.25.2
numpy: 1.12.1
scipy: 0.19.0
xarray: 0.9.6
IPython: 5.3.0
sphinx: 1.5.6
patsy: 0.4.1
dateutil: 2.6.0
pytz: 2017.2
blosc: None
bottleneck: 1.2.1
tables: 3.2.2
numexpr: 2.6.2
feather: None
matplotlib: 2.0.2
openpyxl: 2.4.7
xlrd: 1.0.0
xlwt: 1.2.0
xlsxwriter: 0.9.6
lxml: 3.7.3
bs4: 4.6.0
html5lib: 0.999
sqlalchemy: 1.1.9
pymysql: None
psycopg2: None
jinja2: 2.9.6
s3fs: None
pandas_gbq: None
pandas_datareader: None

@gfyoung gfyoung added the Timedelta Timedelta data type label Aug 10, 2017
@chris-b1
Copy link
Contributor

Duplicate of #14156, thanks for the report, PR welcome!

@chris-b1 chris-b1 added the Duplicate Report Duplicate issue or pull request label Aug 11, 2017
@chris-b1 chris-b1 added this to the No action milestone Aug 11, 2017
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Duplicate Report Duplicate issue or pull request Timedelta Timedelta data type
Projects
None yet
Development

No branches or pull requests

3 participants