Skip to content

Commit 6552718

Browse files
tommyodjreback
authored andcommitted
Spellcheck (#19017)
1 parent c883128 commit 6552718

23 files changed

+203
-160
lines changed

doc/source/10min.rst

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -48,7 +48,7 @@ a default integer index:
4848
s = pd.Series([1,3,5,np.nan,6,8])
4949
s
5050
51-
Creating a :class:`DataFrame` by passing a numpy array, with a datetime index
51+
Creating a :class:`DataFrame` by passing a NumPy array, with a datetime index
5252
and labeled columns:
5353

5454
.. ipython:: python
@@ -114,7 +114,7 @@ Here is how to view the top and bottom rows of the frame:
114114
df.head()
115115
df.tail(3)
116116
117-
Display the index, columns, and the underlying numpy data:
117+
Display the index, columns, and the underlying NumPy data:
118118

119119
.. ipython:: python
120120
@@ -311,7 +311,7 @@ Setting values by position:
311311
312312
df.iat[0,1] = 0
313313
314-
Setting by assigning with a numpy array:
314+
Setting by assigning with a NumPy array:
315315

316316
.. ipython:: python
317317

doc/source/advanced.rst

Lines changed: 5 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -316,7 +316,9 @@ Basic multi-index slicing using slices, lists, and labels.
316316
317317
dfmi.loc[(slice('A1','A3'), slice(None), ['C1', 'C3']), :]
318318
319-
You can use :class:`pandas.IndexSlice` to facilitate a more natural syntax using ``:``, rather than using ``slice(None)``.
319+
320+
You can use :class:`pandas.IndexSlice` to facilitate a more natural syntax
321+
using ``:``, rather than using ``slice(None)``.
320322

321323
.. ipython:: python
322324
@@ -557,7 +559,7 @@ Take Methods
557559

558560
.. _advanced.take:
559561

560-
Similar to numpy ndarrays, pandas Index, Series, and DataFrame also provides
562+
Similar to NumPy ndarrays, pandas Index, Series, and DataFrame also provides
561563
the ``take`` method that retrieves elements along a given axis at the given
562564
indices. The given indices must be either a list or an ndarray of integer
563565
index positions. ``take`` will also accept negative integers as relative positions to the end of the object.
@@ -729,7 +731,7 @@ This is an Immutable array implementing an ordered, sliceable set.
729731
Prior to 0.18.0, the ``Int64Index`` would provide the default index for all ``NDFrame`` objects.
730732
731733
``RangeIndex`` is a sub-class of ``Int64Index`` added in version 0.18.0, now providing the default index for all ``NDFrame`` objects.
732-
``RangeIndex`` is an optimized version of ``Int64Index`` that can represent a monotonic ordered set. These are analogous to python `range types <https://docs.python.org/3/library/stdtypes.html#typesseq-range>`__.
734+
``RangeIndex`` is an optimized version of ``Int64Index`` that can represent a monotonic ordered set. These are analogous to Python `range types <https://docs.python.org/3/library/stdtypes.html#typesseq-range>`__.
733735
734736
.. _indexing.float64index:
735737
@@ -763,7 +765,6 @@ The only positional indexing is via ``iloc``.
763765
sf.iloc[3]
764766
765767
A scalar index that is not found will raise a ``KeyError``.
766-
767768
Slicing is primarily on the values of the index when using ``[],ix,loc``, and
768769
**always** positional when using ``iloc``. The exception is when the slice is
769770
boolean, in which case it will always be positional.

doc/source/api.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -730,7 +730,7 @@ The dtype information is available on the ``Categorical``
730730
Categorical.codes
731731

732732
``np.asarray(categorical)`` works by implementing the array interface. Be aware, that this converts
733-
the Categorical back to a numpy array, so categories and order information is not preserved!
733+
the Categorical back to a NumPy array, so categories and order information is not preserved!
734734

735735
.. autosummary::
736736
:toctree: generated/

doc/source/basics.rst

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -395,7 +395,7 @@ raise a ValueError:
395395
In [56]: pd.Series(['foo', 'bar', 'baz']) == pd.Series(['foo'])
396396
ValueError: Series lengths must match to compare
397397
398-
Note that this is different from the numpy behavior where a comparison can
398+
Note that this is different from the NumPy behavior where a comparison can
399399
be broadcast:
400400

401401
.. ipython:: python
@@ -1000,7 +1000,7 @@ We create a frame similar to the one used in the above sections.
10001000
tsdf.iloc[3:7] = np.nan
10011001
tsdf
10021002
1003-
Transform the entire frame. ``.transform()`` allows input functions as: a numpy function, a string
1003+
Transform the entire frame. ``.transform()`` allows input functions as: a NumPy function, a string
10041004
function name or a user defined function.
10051005

10061006
.. ipython:: python
@@ -1510,7 +1510,7 @@ To iterate over the rows of a DataFrame, you can use the following methods:
15101510
one of the following approaches:
15111511

15121512
* Look for a *vectorized* solution: many operations can be performed using
1513-
built-in methods or numpy functions, (boolean) indexing, ...
1513+
built-in methods or NumPy functions, (boolean) indexing, ...
15141514

15151515
* When you have a function that cannot work on the full DataFrame/Series
15161516
at once, it is better to use :meth:`~DataFrame.apply` instead of iterating
@@ -1971,7 +1971,7 @@ from the current type (e.g. ``int`` to ``float``).
19711971
df3.dtypes
19721972
19731973
The ``values`` attribute on a DataFrame return the *lower-common-denominator* of the dtypes, meaning
1974-
the dtype that can accommodate **ALL** of the types in the resulting homogeneous dtyped numpy array. This can
1974+
the dtype that can accommodate **ALL** of the types in the resulting homogeneous dtyped NumPy array. This can
19751975
force some *upcasting*.
19761976

19771977
.. ipython:: python
@@ -2253,7 +2253,7 @@ can define a function that returns a tree of child dtypes:
22532253
return dtype
22542254
return [dtype, [subdtypes(dt) for dt in subs]]
22552255
2256-
All numpy dtypes are subclasses of ``numpy.generic``:
2256+
All NumPy dtypes are subclasses of ``numpy.generic``:
22572257

22582258
.. ipython:: python
22592259
@@ -2262,4 +2262,4 @@ All numpy dtypes are subclasses of ``numpy.generic``:
22622262
.. note::
22632263

22642264
Pandas also defines the types ``category``, and ``datetime64[ns, tz]``, which are not integrated into the normal
2265-
numpy hierarchy and wont show up with the above function.
2265+
NumPy hierarchy and wont show up with the above function.

doc/source/categorical.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -40,7 +40,7 @@ The categorical data type is useful in the following cases:
4040
* The lexical order of a variable is not the same as the logical order ("one", "two", "three").
4141
By converting to a categorical and specifying an order on the categories, sorting and
4242
min/max will use the logical order instead of the lexical order, see :ref:`here <categorical.sort>`.
43-
* As a signal to other python libraries that this column should be treated as a categorical
43+
* As a signal to other Python libraries that this column should be treated as a categorical
4444
variable (e.g. to use suitable statistical methods or plot types).
4545

4646
See also the :ref:`API docs on categoricals<api.categorical>`.
@@ -366,7 +366,7 @@ or simply set the categories to a predefined scale, use :func:`Categorical.set_c
366366
.. note::
367367
Be aware that :func:`Categorical.set_categories` cannot know whether some category is omitted
368368
intentionally or because it is misspelled or (under Python3) due to a type difference (e.g.,
369-
numpys S1 dtype and python strings). This can result in surprising behaviour!
369+
numpys S1 dtype and Python strings). This can result in surprising behaviour!
370370

371371
Sorting and Order
372372
-----------------

doc/source/comparison_with_sas.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@ performed in pandas.
1010
If you're new to pandas, you might want to first read through :ref:`10 Minutes to pandas<10min>`
1111
to familiarize yourself with the library.
1212

13-
As is customary, we import pandas and numpy as follows:
13+
As is customary, we import pandas and NumPy as follows:
1414

1515
.. ipython:: python
1616
@@ -100,7 +100,7 @@ specifying the column names.
100100
101101
A pandas ``DataFrame`` can be constructed in many different ways,
102102
but for a small number of values, it is often convenient to specify it as
103-
a python dictionary, where the keys are the column names
103+
a Python dictionary, where the keys are the column names
104104
and the values are the data.
105105

106106
.. ipython:: python

doc/source/comparison_with_sql.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@ various SQL operations would be performed using pandas.
1010
If you're new to pandas, you might want to first read through :ref:`10 Minutes to pandas<10min>`
1111
to familiarize yourself with the library.
1212

13-
As is customary, we import pandas and numpy as follows:
13+
As is customary, we import pandas and NumPy as follows:
1414

1515
.. ipython:: python
1616

doc/source/computation.rst

Lines changed: 2 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -57,9 +57,8 @@ Covariance
5757
s2 = pd.Series(np.random.randn(1000))
5858
s1.cov(s2)
5959
60-
Analogously, :meth:`DataFrame.cov` to compute
61-
pairwise covariances among the series in the DataFrame, also excluding
62-
NA/null values.
60+
Analogously, :meth:`DataFrame.cov` to compute pairwise covariances among the
61+
series in the DataFrame, also excluding NA/null values.
6362

6463
.. _computation.covariance.caveats:
6564

doc/source/contributing.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -118,7 +118,7 @@ Creating a development environment
118118
----------------------------------
119119

120120
To test out code changes, you'll need to build pandas from source, which
121-
requires a C compiler and python environment. If you're making documentation
121+
requires a C compiler and Python environment. If you're making documentation
122122
changes, you can skip to :ref:`contributing.documentation` but you won't be able
123123
to build the documentation locally before pushing your changes.
124124

@@ -187,7 +187,7 @@ At this point you should be able to import pandas from your locally built versio
187187
0.22.0.dev0+29.g4ad6d4d74
188188

189189
This will create the new environment, and not touch any of your existing environments,
190-
nor any existing python installation.
190+
nor any existing Python installation.
191191

192192
To view your environments::
193193

doc/source/cookbook.rst

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -41,7 +41,7 @@ above what the in-line examples offer.
4141
Pandas (pd) and Numpy (np) are the only two abbreviated imported modules. The rest are kept
4242
explicitly imported for newer users.
4343

44-
These examples are written for python 3.4. Minor tweaks might be necessary for earlier python
44+
These examples are written for Python 3. Minor tweaks might be necessary for earlier python
4545
versions.
4646

4747
Idioms
@@ -750,7 +750,7 @@ Timeseries
750750
<http://nipunbatra.github.io/2015/06/timeseries/>`__
751751

752752
Turn a matrix with hours in columns and days in rows into a continuous row sequence in the form of a time series.
753-
`How to rearrange a python pandas DataFrame?
753+
`How to rearrange a Python pandas DataFrame?
754754
<http://stackoverflow.com/questions/15432659/how-to-rearrange-a-python-pandas-dataframe>`__
755755

756756
`Dealing with duplicates when reindexing a timeseries to a specified frequency
@@ -1152,7 +1152,7 @@ Storing Attributes to a group node
11521152
store = pd.HDFStore('test.h5')
11531153
store.put('df',df)
11541154
1155-
# you can store an arbitrary python object via pickle
1155+
# you can store an arbitrary Python object via pickle
11561156
store.get_storer('df').attrs.my_attribute = dict(A = 10)
11571157
store.get_storer('df').attrs.my_attribute
11581158
@@ -1167,7 +1167,7 @@ Storing Attributes to a group node
11671167
Binary Files
11681168
************
11691169

1170-
pandas readily accepts numpy record arrays, if you need to read in a binary
1170+
pandas readily accepts NumPy record arrays, if you need to read in a binary
11711171
file consisting of an array of C structs. For example, given this C program
11721172
in a file called ``main.c`` compiled with ``gcc main.c -std=gnu99`` on a
11731173
64-bit machine,

0 commit comments

Comments
 (0)