@@ -147,25 +147,66 @@ def _get_marker_compat(marker):
147147
148148
149149def radviz (frame , class_column , ax = None , color = None , colormap = None , ** kwds ):
150- """RadViz - a multivariate data visualization algorithm
150+ """
151+ Plot a multidimensional dataset in 2D.
152+
153+ Each Series in the DataFrame is represented as a evenly distributed
154+ slice on a circle. Each data point is rendered in the circle according to
155+ the value on each Series. Highly correlated `Series` in the `DataFrame`
156+ are placed closer on the unit circle.
157+
158+ RadViz allow to project a N-dimensional data set into a 2D space where the
159+ influence of each dimension can be interpreted as a balance between the
160+ influence of all dimensions.
161+
162+ More info available at the `original article
163+ <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.135.889>`_
164+ describing RadViz.
151165
152166 Parameters
153167 ----------
154- frame: DataFrame
155- class_column: str
156- Column name containing class names
157- ax: Matplotlib axis object, optional
158- color: list or tuple, optional
159- Colors to use for the different classes
160- colormap : str or matplotlib colormap object, default None
161- Colormap to select colors from. If string, load colormap with that name
162- from matplotlib.
163- kwds: keywords
164- Options to pass to matplotlib scatter plotting method
168+ frame : `DataFrame`
169+ Pandas object holding the data.
170+ class_column : str
171+ Column name containing the name of the data point category.
172+ ax : :class:`matplotlib.axes.Axes`, optional
173+ A plot instance to which to add the information.
174+ color : list[str] or tuple[str], optional
175+ Assign a color to each category. Example: ['blue', 'green'].
176+ colormap : str or :class:`matplotlib.colors.Colormap`, default None
177+ Colormap to select colors from. If string, load colormap with that
178+ name from matplotlib.
179+ kwds : optional
180+ Options to pass to matplotlib scatter plotting method.
165181
166182 Returns
167183 -------
168- ax: Matplotlib axis object
184+ axes : :class:`matplotlib.axes.Axes`
185+
186+ See Also
187+ --------
188+ pandas.plotting.andrews_curves : Plot clustering visualization
189+
190+ Examples
191+ --------
192+ .. plot::
193+ :context: close-figs
194+
195+ >>> df = pd.DataFrame({
196+ ... 'SepalLength': [6.5, 7.7, 5.1, 5.8, 7.6, 5.0, 5.4, 4.6,
197+ ... 6.7, 4.6],
198+ ... 'SepalWidth': [3.0, 3.8, 3.8, 2.7, 3.0, 2.3, 3.0, 3.2,
199+ ... 3.3, 3.6],
200+ ... 'PetalLength': [5.5, 6.7, 1.9, 5.1, 6.6, 3.3, 4.5, 1.4,
201+ ... 5.7, 1.0],
202+ ... 'PetalWidth': [1.8, 2.2, 0.4, 1.9, 2.1, 1.0, 1.5, 0.2,
203+ ... 2.1, 0.2],
204+ ... 'Category': ['virginica', 'virginica', 'setosa',
205+ ... 'virginica', 'virginica', 'versicolor',
206+ ... 'versicolor', 'setosa', 'virginica',
207+ ... 'setosa']
208+ ... })
209+ >>> rad_viz = pd.plotting.radviz(df, 'Category')
169210 """
170211 import matplotlib .pyplot as plt
171212 import matplotlib .patches as patches
0 commit comments