@@ -273,12 +273,12 @@ def _values_for_factorize(self) -> Tuple[np.ndarray, int]:
273
273
# Reductions
274
274
275
275
def any (self , * , axis = None , out = None , keepdims = False , skipna = True ):
276
- nv .validate_any ((), dict ( out = out , keepdims = keepdims ) )
276
+ nv .validate_any ((), { " out" : out , " keepdims" : keepdims } )
277
277
result = nanops .nanany (self ._ndarray , axis = axis , skipna = skipna )
278
278
return self ._wrap_reduction_result (axis , result )
279
279
280
280
def all (self , * , axis = None , out = None , keepdims = False , skipna = True ):
281
- nv .validate_all ((), dict ( out = out , keepdims = keepdims ) )
281
+ nv .validate_all ((), { " out" : out , " keepdims" : keepdims } )
282
282
result = nanops .nanall (self ._ndarray , axis = axis , skipna = skipna )
283
283
return self ._wrap_reduction_result (axis , result )
284
284
@@ -311,15 +311,15 @@ def prod(self, *, axis=None, skipna=True, min_count=0, **kwargs) -> Scalar:
311
311
return self ._wrap_reduction_result (axis , result )
312
312
313
313
def mean (self , * , axis = None , dtype = None , out = None , keepdims = False , skipna = True ):
314
- nv .validate_mean ((), dict ( dtype = dtype , out = out , keepdims = keepdims ) )
314
+ nv .validate_mean ((), { " dtype" : dtype , " out" : out , " keepdims" : keepdims } )
315
315
result = nanops .nanmean (self ._ndarray , axis = axis , skipna = skipna )
316
316
return self ._wrap_reduction_result (axis , result )
317
317
318
318
def median (
319
319
self , * , axis = None , out = None , overwrite_input = False , keepdims = False , skipna = True
320
320
):
321
321
nv .validate_median (
322
- (), dict ( out = out , overwrite_input = overwrite_input , keepdims = keepdims )
322
+ (), { " out" : out , " overwrite_input" : overwrite_input , " keepdims" : keepdims }
323
323
)
324
324
result = nanops .nanmedian (self ._ndarray , axis = axis , skipna = skipna )
325
325
return self ._wrap_reduction_result (axis , result )
@@ -328,7 +328,7 @@ def std(
328
328
self , * , axis = None , dtype = None , out = None , ddof = 1 , keepdims = False , skipna = True
329
329
):
330
330
nv .validate_stat_ddof_func (
331
- (), dict ( dtype = dtype , out = out , keepdims = keepdims ) , fname = "std"
331
+ (), { " dtype" : dtype , " out" : out , " keepdims" : keepdims } , fname = "std"
332
332
)
333
333
result = nanops .nanstd (self ._ndarray , axis = axis , skipna = skipna , ddof = ddof )
334
334
return self ._wrap_reduction_result (axis , result )
@@ -337,7 +337,7 @@ def var(
337
337
self , * , axis = None , dtype = None , out = None , ddof = 1 , keepdims = False , skipna = True
338
338
):
339
339
nv .validate_stat_ddof_func (
340
- (), dict ( dtype = dtype , out = out , keepdims = keepdims ) , fname = "var"
340
+ (), { " dtype" : dtype , " out" : out , " keepdims" : keepdims } , fname = "var"
341
341
)
342
342
result = nanops .nanvar (self ._ndarray , axis = axis , skipna = skipna , ddof = ddof )
343
343
return self ._wrap_reduction_result (axis , result )
@@ -346,21 +346,21 @@ def sem(
346
346
self , * , axis = None , dtype = None , out = None , ddof = 1 , keepdims = False , skipna = True
347
347
):
348
348
nv .validate_stat_ddof_func (
349
- (), dict ( dtype = dtype , out = out , keepdims = keepdims ) , fname = "sem"
349
+ (), { " dtype" : dtype , " out" : out , " keepdims" : keepdims } , fname = "sem"
350
350
)
351
351
result = nanops .nansem (self ._ndarray , axis = axis , skipna = skipna , ddof = ddof )
352
352
return self ._wrap_reduction_result (axis , result )
353
353
354
354
def kurt (self , * , axis = None , dtype = None , out = None , keepdims = False , skipna = True ):
355
355
nv .validate_stat_ddof_func (
356
- (), dict ( dtype = dtype , out = out , keepdims = keepdims ) , fname = "kurt"
356
+ (), { " dtype" : dtype , " out" : out , " keepdims" : keepdims } , fname = "kurt"
357
357
)
358
358
result = nanops .nankurt (self ._ndarray , axis = axis , skipna = skipna )
359
359
return self ._wrap_reduction_result (axis , result )
360
360
361
361
def skew (self , * , axis = None , dtype = None , out = None , keepdims = False , skipna = True ):
362
362
nv .validate_stat_ddof_func (
363
- (), dict ( dtype = dtype , out = out , keepdims = keepdims ) , fname = "skew"
363
+ (), { " dtype" : dtype , " out" : out , " keepdims" : keepdims } , fname = "skew"
364
364
)
365
365
result = nanops .nanskew (self ._ndarray , axis = axis , skipna = skipna )
366
366
return self ._wrap_reduction_result (axis , result )
0 commit comments