|
| 1 | +# Copyright The OpenTelemetry Authors |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +from platform import system |
| 16 | +from unittest import TestCase |
| 17 | + |
| 18 | +from pytest import mark |
| 19 | + |
| 20 | +from opentelemetry.sdk.metrics import Histogram, MeterProvider |
| 21 | +from opentelemetry.sdk.metrics.export import ( |
| 22 | + AggregationTemporality, |
| 23 | + InMemoryMetricReader, |
| 24 | +) |
| 25 | +from opentelemetry.sdk.metrics.view import ( |
| 26 | + ExponentialBucketHistogramAggregation |
| 27 | +) |
| 28 | + |
| 29 | + |
| 30 | +class TestExponentialBucketHistogramAggregation(TestCase): |
| 31 | + |
| 32 | + test_values = [1, 6, 11, 26, 51, 76, 101, 251, 501, 751] |
| 33 | + |
| 34 | + @mark.skipif( |
| 35 | + system() == "Windows", |
| 36 | + reason=( |
| 37 | + "Tests fail because Windows time_ns resolution is too low so " |
| 38 | + "two different time measurements may end up having the exact same" |
| 39 | + "value." |
| 40 | + ), |
| 41 | + ) |
| 42 | + def test_synchronous_delta_temporality(self): |
| 43 | + |
| 44 | + aggregation = ExponentialBucketHistogramAggregation() |
| 45 | + |
| 46 | + reader = InMemoryMetricReader( |
| 47 | + preferred_aggregation={Histogram: aggregation}, |
| 48 | + preferred_temporality={Histogram: AggregationTemporality.DELTA}, |
| 49 | + ) |
| 50 | + |
| 51 | + provider = MeterProvider(metric_readers=[reader]) |
| 52 | + meter = provider.get_meter("name", "version") |
| 53 | + |
| 54 | + histogram = meter.create_histogram("histogram") |
| 55 | + |
| 56 | + results = [] |
| 57 | + |
| 58 | + for _ in range(10): |
| 59 | + |
| 60 | + results.append(reader.get_metrics_data()) |
| 61 | + |
| 62 | + for metrics_data in results: |
| 63 | + self.assertIsNone(metrics_data) |
| 64 | + |
| 65 | + results = [] |
| 66 | + |
| 67 | + for test_value in self.test_values: |
| 68 | + histogram.record(test_value) |
| 69 | + results.append(reader.get_metrics_data()) |
| 70 | + |
| 71 | + metric_data = ( |
| 72 | + results[0] |
| 73 | + .resource_metrics[0] |
| 74 | + .scope_metrics[0] |
| 75 | + .metrics[0] |
| 76 | + .data.data_points[0] |
| 77 | + ) |
| 78 | + |
| 79 | + previous_time_unix_nano = metric_data.time_unix_nano |
| 80 | + |
| 81 | + """ |
| 82 | + self.assertEqual( |
| 83 | + metric_data.bucket_counts, |
| 84 | + (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), |
| 85 | + ) |
| 86 | + """ |
| 87 | + |
| 88 | + self.assertLess( |
| 89 | + metric_data.start_time_unix_nano, |
| 90 | + previous_time_unix_nano, |
| 91 | + ) |
| 92 | + self.assertEqual(metric_data.min, self.test_values[0]) |
| 93 | + self.assertEqual(metric_data.max, self.test_values[0]) |
| 94 | + self.assertEqual(metric_data.sum, self.test_values[0]) |
| 95 | + |
| 96 | + for index, metrics_data in enumerate(results[1:]): |
| 97 | + metric_data = ( |
| 98 | + metrics_data.resource_metrics[0] |
| 99 | + .scope_metrics[0] |
| 100 | + .metrics[0] |
| 101 | + .data.data_points[0] |
| 102 | + ) |
| 103 | + |
| 104 | + self.assertEqual( |
| 105 | + previous_time_unix_nano, metric_data.start_time_unix_nano |
| 106 | + ) |
| 107 | + previous_time_unix_nano = metric_data.time_unix_nano |
| 108 | + """ |
| 109 | + self.assertEqual( |
| 110 | + metric_data.bucket_counts, |
| 111 | + tuple( |
| 112 | + [ |
| 113 | + 1 if internal_index == index + 2 else 0 |
| 114 | + for internal_index in range(16) |
| 115 | + ] |
| 116 | + ), |
| 117 | + ) |
| 118 | + """ |
| 119 | + self.assertLess( |
| 120 | + metric_data.start_time_unix_nano, metric_data.time_unix_nano |
| 121 | + ) |
| 122 | + self.assertEqual(metric_data.min, self.test_values[index + 1]) |
| 123 | + self.assertEqual(metric_data.max, self.test_values[index + 1]) |
| 124 | + self.assertEqual(metric_data.sum, self.test_values[index + 1]) |
| 125 | + |
| 126 | + results = [] |
| 127 | + |
| 128 | + for _ in range(10): |
| 129 | + |
| 130 | + results.append(reader.get_metrics_data()) |
| 131 | + |
| 132 | + provider.shutdown() |
| 133 | + |
| 134 | + for metrics_data in results: |
| 135 | + self.assertIsNone(metrics_data) |
| 136 | + |
| 137 | + @mark.skipif( |
| 138 | + system() == "Windows", |
| 139 | + reason=( |
| 140 | + "Tests fail because Windows time_ns resolution is too low so " |
| 141 | + "two different time measurements may end up having the exact same" |
| 142 | + "value." |
| 143 | + ), |
| 144 | + ) |
| 145 | + def test_synchronous_cumulative_temporality(self): |
| 146 | + |
| 147 | + aggregation = ExponentialBucketHistogramAggregation() |
| 148 | + |
| 149 | + reader = InMemoryMetricReader( |
| 150 | + preferred_aggregation={Histogram: aggregation}, |
| 151 | + preferred_temporality={ |
| 152 | + Histogram: AggregationTemporality.CUMULATIVE |
| 153 | + }, |
| 154 | + ) |
| 155 | + |
| 156 | + provider = MeterProvider(metric_readers=[reader]) |
| 157 | + meter = provider.get_meter("name", "version") |
| 158 | + |
| 159 | + histogram = meter.create_histogram("histogram") |
| 160 | + |
| 161 | + results = [] |
| 162 | + |
| 163 | + for _ in range(10): |
| 164 | + |
| 165 | + results.append(reader.get_metrics_data()) |
| 166 | + |
| 167 | + for metrics_data in results: |
| 168 | + self.assertIsNone(metrics_data) |
| 169 | + |
| 170 | + results = [] |
| 171 | + |
| 172 | + for test_value in self.test_values: |
| 173 | + |
| 174 | + histogram.record(test_value) |
| 175 | + results.append(reader.get_metrics_data()) |
| 176 | + |
| 177 | + start_time_unix_nano = ( |
| 178 | + results[0] |
| 179 | + .resource_metrics[0] |
| 180 | + .scope_metrics[0] |
| 181 | + .metrics[0] |
| 182 | + .data.data_points[0] |
| 183 | + .start_time_unix_nano |
| 184 | + ) |
| 185 | + |
| 186 | + for index, metrics_data in enumerate(results): |
| 187 | + |
| 188 | + metric_data = ( |
| 189 | + metrics_data.resource_metrics[0] |
| 190 | + .scope_metrics[0] |
| 191 | + .metrics[0] |
| 192 | + .data.data_points[0] |
| 193 | + ) |
| 194 | + |
| 195 | + self.assertEqual( |
| 196 | + start_time_unix_nano, metric_data.start_time_unix_nano |
| 197 | + ) |
| 198 | + """ |
| 199 | + self.assertEqual( |
| 200 | + metric_data.bucket_counts, |
| 201 | + tuple( |
| 202 | + [ |
| 203 | + ( |
| 204 | + 0 |
| 205 | + if internal_index < 1 or internal_index > index + 1 |
| 206 | + else 1 |
| 207 | + ) |
| 208 | + for internal_index in range(16) |
| 209 | + ] |
| 210 | + ), |
| 211 | + ) |
| 212 | + """ |
| 213 | + self.assertEqual(metric_data.min, self.test_values[0]) |
| 214 | + self.assertEqual(metric_data.max, self.test_values[index]) |
| 215 | + self.assertEqual( |
| 216 | + metric_data.sum, sum(self.test_values[: index + 1]) |
| 217 | + ) |
| 218 | + |
| 219 | + results = [] |
| 220 | + |
| 221 | + for i in range(10): |
| 222 | + |
| 223 | + results.append(reader.get_metrics_data()) |
| 224 | + |
| 225 | + provider.shutdown() |
| 226 | + |
| 227 | + start_time_unix_nano = ( |
| 228 | + results[0] |
| 229 | + .resource_metrics[0] |
| 230 | + .scope_metrics[0] |
| 231 | + .metrics[0] |
| 232 | + .data.data_points[0] |
| 233 | + .start_time_unix_nano |
| 234 | + ) |
| 235 | + |
| 236 | + for metrics_data in results: |
| 237 | + |
| 238 | + metric_data = ( |
| 239 | + metrics_data.resource_metrics[0] |
| 240 | + .scope_metrics[0] |
| 241 | + .metrics[0] |
| 242 | + .data.data_points[0] |
| 243 | + ) |
| 244 | + |
| 245 | + self.assertEqual( |
| 246 | + start_time_unix_nano, metric_data.start_time_unix_nano |
| 247 | + ) |
| 248 | + """ |
| 249 | + self.assertEqual( |
| 250 | + metric_data.bucket_counts, |
| 251 | + (0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0), |
| 252 | + ) |
| 253 | + """ |
| 254 | + self.assertEqual(metric_data.min, self.test_values[0]) |
| 255 | + self.assertEqual(metric_data.max, self.test_values[-1]) |
| 256 | + self.assertEqual(metric_data.sum, sum(self.test_values)) |
0 commit comments