@@ -515,16 +515,16 @@ We could record the parameters necessary for $f$ as the 3 by 3 matrix, $M$
515
515
and the 3 by 1 vector $(a, b, c)$.
516
516
517
517
In fact, the 4 by 4 image *affine array * does include exactly this
518
- information. If $m_{ij }$ is the value in row $i$ column $j$ of matrix $M$,
518
+ information. If $m_{i,j }$ is the value in row $i$ column $j$ of matrix $M$,
519
519
then the image affine matrix $A$ is:
520
520
521
521
.. math ::
522
522
523
523
A =
524
524
\begin {bmatrix}
525
- m_{11 } & m_{12 } & m_{13 } & a \\
526
- m_{21 } & m_{22 } & m_{23 } & b \\
527
- m_{31 } & m_{32 } & m_{33 } & c \\
525
+ m_{1 , 1 } & m_{1 , 2 } & m_{1 , 3 } & a \\
526
+ m_{2 , 1 } & m_{2 , 2 } & m_{2 , 3 } & b \\
527
+ m_{3 , 1 } & m_{3 , 2 } & m_{3 , 3 } & c \\
528
528
0 & 0 & 0 & 1 \\
529
529
\end {bmatrix}
530
530
@@ -546,9 +546,9 @@ vectors:
546
546
1 \\
547
547
\end {bmatrix} =
548
548
\begin {bmatrix}
549
- m_{11 } & m_{12 } & m_{13 } & a \\
550
- m_{21 } & m_{22 } & m_{23 } & b \\
551
- m_{31 } & m_{32 } & m_{33 } & c \\
549
+ m_{1 , 1 } & m_{1 , 2 } & m_{1 , 3 } & a \\
550
+ m_{2 , 1 } & m_{2 , 2 } & m_{2 , 3 } & b \\
551
+ m_{3 , 1 } & m_{3 , 2 } & m_{3 , 3 } & c \\
552
552
0 & 0 & 0 & 1 \\
553
553
\end {bmatrix}
554
554
\begin {bmatrix}
@@ -614,6 +614,19 @@ matrix. Put another way:
614
614
1 \\
615
615
\end {bmatrix}
616
616
617
+ A^{-1 }\begin {bmatrix}
618
+ x\\
619
+ y\\
620
+ z\\
621
+ 1 \\
622
+ \end {bmatrix} = A^{-1 } A
623
+ \begin {bmatrix}
624
+ i\\
625
+ j\\
626
+ k\\
627
+ 1 \\
628
+ \end {bmatrix}
629
+
617
630
\begin {bmatrix}
618
631
i\\
619
632
j\\
0 commit comments