|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "metadata": {}, |
| 5 | + "cell_type": "markdown", |
| 6 | + "source": "Gaussian process notebook", |
| 7 | + "id": "486923b289155658" |
| 8 | + }, |
| 9 | + { |
| 10 | + "metadata": {}, |
| 11 | + "cell_type": "code", |
| 12 | + "source": [ |
| 13 | + "import tempfile\n", |
| 14 | + "from pathlib import Path\n", |
| 15 | + "\n", |
| 16 | + "import numpy as np\n", |
| 17 | + "from sklearn.gaussian_process.kernels import DotProduct, WhiteKernel\n", |
| 18 | + "\n", |
| 19 | + "from eddymotion import model\n", |
| 20 | + "from eddymotion.data.dmri import DWI\n", |
| 21 | + "from eddymotion.data.splitting import lovo_split\n", |
| 22 | + "\n", |
| 23 | + "datadir = Path(\"../../test\") # Adapt to your local path or download to a temp location using wget\n", |
| 24 | + "\n", |
| 25 | + "kernel = DotProduct() + WhiteKernel()\n", |
| 26 | + "\n", |
| 27 | + "dwi = DWI.from_filename(datadir / \"dwi.h5\")\n", |
| 28 | + "\n", |
| 29 | + "_dwi_data = dwi.dataobj\n", |
| 30 | + "# Use a subset of the data for now to see that something is written to the\n", |
| 31 | + "# output\n", |
| 32 | + "# bvecs = dwi.gradients[:3, :].T\n", |
| 33 | + "bvecs = dwi.gradients[:3, 10:13].T # b0 values have already been masked\n", |
| 34 | + "# bvals = dwi.gradients[3:, 10:13].T # Only for inspection purposes: [[1005.], [1000.], [ 995.]]\n", |
| 35 | + "dwi_data = _dwi_data[60:63, 60:64, 40:45, 10:13]\n", |
| 36 | + "\n", |
| 37 | + "# ToDo\n", |
| 38 | + "# Provide proper values/estimates for these\n", |
| 39 | + "a = 1\n", |
| 40 | + "h = 1 # should be a NIfTI image\n", |
| 41 | + "\n", |
| 42 | + "num_iterations = 5\n", |
| 43 | + "gp = model.GaussianProcessModel(\n", |
| 44 | + " dwi=dwi, a=a, h=h, kernel=kernel, num_iterations=num_iterations\n", |
| 45 | + ")\n", |
| 46 | + "indices = list(range(bvecs.shape[0]))\n", |
| 47 | + "# ToDo\n", |
| 48 | + "# This should be done within the GP model class\n", |
| 49 | + "# Apply lovo strategy properly\n", |
| 50 | + "# Vectorize and parallelize\n", |
| 51 | + "result_mean = np.zeros_like(dwi_data)\n", |
| 52 | + "result_stddev = np.zeros_like(dwi_data)\n", |
| 53 | + "for idx in indices:\n", |
| 54 | + " lovo_idx = np.ones(len(indices), dtype=bool)\n", |
| 55 | + " lovo_idx[idx] = False\n", |
| 56 | + " X = bvecs[lovo_idx]\n", |
| 57 | + " for i in range(dwi_data.shape[0]):\n", |
| 58 | + " for j in range(dwi_data.shape[1]):\n", |
| 59 | + " for k in range(dwi_data.shape[2]):\n", |
| 60 | + " # ToDo\n", |
| 61 | + " # Use a mask to avoid traversing background data\n", |
| 62 | + " y = dwi_data[i, j, k, lovo_idx]\n", |
| 63 | + " gp.fit(X, y)\n", |
| 64 | + " pred_mean, pred_stddev = gp.predict(\n", |
| 65 | + " bvecs[idx, :][np.newaxis]\n", |
| 66 | + " ) # Can take multiple values X[:2, :]\n", |
| 67 | + " result_mean[i, j, k, idx] = pred_mean.item()\n", |
| 68 | + " result_stddev[i, j, k, idx] = pred_stddev.item()" |
| 69 | + ], |
| 70 | + "id": "da2274009534db61", |
| 71 | + "outputs": [], |
| 72 | + "execution_count": null |
| 73 | + }, |
| 74 | + { |
| 75 | + "metadata": {}, |
| 76 | + "cell_type": "markdown", |
| 77 | + "source": "Plot the data", |
| 78 | + "id": "77e77cd4c73409d3" |
| 79 | + }, |
| 80 | + { |
| 81 | + "metadata": {}, |
| 82 | + "cell_type": "code", |
| 83 | + "source": [ |
| 84 | + "from matplotlib import pyplot as plt \n", |
| 85 | + "%matplotlib inline\n", |
| 86 | + "\n", |
| 87 | + "s = dwi_data[1, 1, 2, :]\n", |
| 88 | + "s_hat_mean = result_mean[1, 1, 2, :]\n", |
| 89 | + "s_hat_stddev = result_stddev[1, 1, 2, :]\n", |
| 90 | + "x = np.asarray(indices)\n", |
| 91 | + "\n", |
| 92 | + "fig, ax = plt.subplots()\n", |
| 93 | + "ax.plot(x, s_hat_mean, c=\"orange\", label=\"predicted\")\n", |
| 94 | + "plt.fill_between(\n", |
| 95 | + " x.ravel(),\n", |
| 96 | + " s_hat_mean - 1.96 * s_hat_stddev,\n", |
| 97 | + " s_hat_mean + 1.96 * s_hat_stddev,\n", |
| 98 | + " alpha=0.5,\n", |
| 99 | + " color=\"orange\",\n", |
| 100 | + " label=r\"95% confidence interval\",\n", |
| 101 | + ")\n", |
| 102 | + "plt.scatter(x, s, c=\"b\", label=\"ground truth\")\n", |
| 103 | + "ax.set_xlabel(\"bvec indices\")\n", |
| 104 | + "ax.set_ylabel(\"signal\")\n", |
| 105 | + "ax.legend()\n", |
| 106 | + "plt.title(\"Gaussian process regression on dataset\")\n", |
| 107 | + "\n", |
| 108 | + "plt.show()" |
| 109 | + ], |
| 110 | + "id": "4e51f22890fb045a", |
| 111 | + "outputs": [], |
| 112 | + "execution_count": null |
| 113 | + }, |
| 114 | + { |
| 115 | + "metadata": {}, |
| 116 | + "cell_type": "markdown", |
| 117 | + "source": [ |
| 118 | + "Plot the DWI signal for a given voxel\n", |
| 119 | + "Compute the DWI signal value wrt the b0 (how much larger/smaller is and add that delta to the unit sphere?) for each bvec direction and plot that?" |
| 120 | + ], |
| 121 | + "id": "694a4c075457425d" |
| 122 | + }, |
| 123 | + { |
| 124 | + "metadata": {}, |
| 125 | + "cell_type": "code", |
| 126 | + "source": [ |
| 127 | + "# from mpl_toolkits.mplot3d import Axes3D\n", |
| 128 | + "# fig, ax = plt.subplots()\n", |
| 129 | + "# ax = fig.add_subplot(111, projection='3d')\n", |
| 130 | + "# plt.scatter(xx, yy, zz)" |
| 131 | + ], |
| 132 | + "id": "bb7d2aef53ac99f0", |
| 133 | + "outputs": [], |
| 134 | + "execution_count": null |
| 135 | + }, |
| 136 | + { |
| 137 | + "metadata": {}, |
| 138 | + "cell_type": "markdown", |
| 139 | + "source": "Plot the DWI signal brain data\n", |
| 140 | + "id": "62d7bc609b65c7cf" |
| 141 | + }, |
| 142 | + { |
| 143 | + "metadata": {}, |
| 144 | + "cell_type": "code", |
| 145 | + "source": "# plot_dwi(dmri_dataset.dataobj, dmri_dataset.affine, gradient=data_test[1], black_bg=True)", |
| 146 | + "id": "edb0e9d255516e38", |
| 147 | + "outputs": [], |
| 148 | + "execution_count": null |
| 149 | + }, |
| 150 | + { |
| 151 | + "metadata": {}, |
| 152 | + "cell_type": "markdown", |
| 153 | + "source": "Plot the predicted DWI signal", |
| 154 | + "id": "1a52e2450fc61dc6" |
| 155 | + }, |
| 156 | + { |
| 157 | + "metadata": {}, |
| 158 | + "cell_type": "code", |
| 159 | + "source": "# plot_dwi(predicted, dmri_dataset.affine, gradient=data_test[1], black_bg=True);", |
| 160 | + "id": "66150cf337b395e0", |
| 161 | + "outputs": [], |
| 162 | + "execution_count": null |
| 163 | + } |
| 164 | + ], |
| 165 | + "metadata": { |
| 166 | + "kernelspec": { |
| 167 | + "display_name": "Python 3", |
| 168 | + "language": "python", |
| 169 | + "name": "python3" |
| 170 | + }, |
| 171 | + "language_info": { |
| 172 | + "codemirror_mode": { |
| 173 | + "name": "ipython", |
| 174 | + "version": 2 |
| 175 | + }, |
| 176 | + "file_extension": ".py", |
| 177 | + "mimetype": "text/x-python", |
| 178 | + "name": "python", |
| 179 | + "nbconvert_exporter": "python", |
| 180 | + "pygments_lexer": "ipython2", |
| 181 | + "version": "2.7.6" |
| 182 | + } |
| 183 | + }, |
| 184 | + "nbformat": 4, |
| 185 | + "nbformat_minor": 5 |
| 186 | +} |
0 commit comments