|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "metadata": {}, |
| 5 | + "cell_type": "markdown", |
| 6 | + "source": "Plot the exponential and spherical covariance models.", |
| 7 | + "id": "68526eb57440fb0e" |
| 8 | + }, |
| 9 | + { |
| 10 | + "metadata": {}, |
| 11 | + "cell_type": "markdown", |
| 12 | + "source": "Compute the exponential and the spherical covariance function matrix values for angles between 0 and $\\pi/2$. The length scale parameters are set to $a=1.23$ and $a=0.5$ for the spherical and the exponential functions respectively.", |
| 13 | + "id": "a124686bde634d64" |
| 14 | + }, |
| 15 | + { |
| 16 | + "metadata": {}, |
| 17 | + "cell_type": "code", |
| 18 | + "source": [ |
| 19 | + "import numpy as np\n", |
| 20 | + "\n", |
| 21 | + "from eddymotion.model.dmri_covariance import (\n", |
| 22 | + " compute_exponential_covariance,\n", |
| 23 | + " compute_spherical_covariance,\n", |
| 24 | + ")\n", |
| 25 | + "\n", |
| 26 | + "theta_lin = np.linspace(0, np.pi/2, num=1000)\n", |
| 27 | + "\n", |
| 28 | + "a_exp = 0.5\n", |
| 29 | + "cov_exp = compute_exponential_covariance(theta_lin, a_exp)\n", |
| 30 | + "\n", |
| 31 | + "a_sph = 1.23\n", |
| 32 | + "cov_sph = compute_spherical_covariance(theta_lin, a_sph)" |
| 33 | + ], |
| 34 | + "id": "457b781088e1cae2", |
| 35 | + "outputs": [], |
| 36 | + "execution_count": null |
| 37 | + }, |
| 38 | + { |
| 39 | + "metadata": {}, |
| 40 | + "cell_type": "markdown", |
| 41 | + "source": "Plot the exponential and spherical covariance functions.", |
| 42 | + "id": "1c5f9da8b3a9394e" |
| 43 | + }, |
| 44 | + { |
| 45 | + "metadata": {}, |
| 46 | + "cell_type": "code", |
| 47 | + "source": [ |
| 48 | + "import matplotlib.pyplot as plt\n", |
| 49 | + "\n", |
| 50 | + "# Plot the exponential and spherical model covariances\n", |
| 51 | + "plt.plot(theta_lin, cov_exp, label=\"Exponential cov\")\n", |
| 52 | + "plt.plot(theta_lin, cov_sph, label=\"Spherical cov\")\n", |
| 53 | + "\n", |
| 54 | + "plt.xticks([0.0, np.pi/8, np.pi/4, 3*np.pi/8, np.pi/2], [\"0\", \"pi/8\", \"pi/4\", \"3pi/8\", \"pi/2\"])\n", |
| 55 | + "\n", |
| 56 | + "plt.xlabel(\"Angular distance\")\n", |
| 57 | + "plt.ylabel(\"Covariance (arbitrary scaling)\")\n", |
| 58 | + "\n", |
| 59 | + "plt.legend()\n", |
| 60 | + "plt.show()" |
| 61 | + ], |
| 62 | + "id": "9f8abf14503066e0", |
| 63 | + "outputs": [], |
| 64 | + "execution_count": null |
| 65 | + } |
| 66 | + ], |
| 67 | + "metadata": { |
| 68 | + "kernelspec": { |
| 69 | + "display_name": "Python 3", |
| 70 | + "language": "python", |
| 71 | + "name": "python3" |
| 72 | + }, |
| 73 | + "language_info": { |
| 74 | + "codemirror_mode": { |
| 75 | + "name": "ipython", |
| 76 | + "version": 2 |
| 77 | + }, |
| 78 | + "file_extension": ".py", |
| 79 | + "mimetype": "text/x-python", |
| 80 | + "name": "python", |
| 81 | + "nbconvert_exporter": "python", |
| 82 | + "pygments_lexer": "ipython2", |
| 83 | + "version": "2.7.6" |
| 84 | + } |
| 85 | + }, |
| 86 | + "nbformat": 4, |
| 87 | + "nbformat_minor": 5 |
| 88 | +} |
0 commit comments