@@ -39,7 +39,7 @@ class EddyMotionEstimator:
39
39
40
40
@staticmethod
41
41
def estimate (
42
- dwdata ,
42
+ data ,
43
43
* ,
44
44
align_kwargs = None ,
45
45
iter_kwargs = None ,
@@ -53,7 +53,7 @@ def estimate(
53
53
54
54
Parameters
55
55
----------
56
- dwdata : :obj:`~eddymotion.dmri.DWI`
56
+ data : :obj:`~eddymotion.dmri.DWI`
57
57
The target DWI dataset, represented by this tool's internal
58
58
type. The object is used in-place, and will contain the estimated
59
59
parameters in its ``em_affines`` property, as well as the rotated
@@ -88,7 +88,7 @@ def estimate(
88
88
"seed" : None ,
89
89
"bvals" : None , # TODO: extract b-vals here if pertinent
90
90
} | iter_kwargs
91
- iter_kwargs ["size" ] = len (dwdata )
91
+ iter_kwargs ["size" ] = len (data )
92
92
93
93
iterfunc = getattr (eutils , f'{ iter_kwargs .pop ("strategy" , "random" )} _iterator' )
94
94
index_order = list (iterfunc (** iter_kwargs ))
@@ -107,9 +107,9 @@ def estimate(
107
107
108
108
for i_iter , model in enumerate (models ):
109
109
# When downsampling these need to be set per-level
110
- bmask_img = _prepare_brainmask_data (dwdata .brainmask , dwdata .affine )
110
+ bmask_img = _prepare_brainmask_data (data .brainmask , data .affine )
111
111
112
- _prepare_kwargs (dwdata , kwargs )
112
+ _prepare_kwargs (data , kwargs )
113
113
114
114
single_model = model .lower () in (
115
115
"b0" ,
@@ -130,7 +130,7 @@ def estimate(
130
130
model = model ,
131
131
** kwargs ,
132
132
)
133
- dwmodel .fit (dwdata .dataobj , n_jobs = n_jobs )
133
+ dwmodel .fit (data .dataobj , n_jobs = n_jobs )
134
134
135
135
with TemporaryDirectory () as tmp_dir :
136
136
print (f"Processing in <{ tmp_dir } >" )
@@ -141,12 +141,12 @@ def estimate(
141
141
pbar .set_description_str (
142
142
f"Pass { i_iter + 1 } /{ n_iter } | Fit and predict b-index <{ i } >"
143
143
)
144
- data_train , data_test = lovo_split (dwdata , i , with_b0 = True )
144
+ data_train , data_test = lovo_split (data , i , with_b0 = True )
145
145
grad_str = f"{ i } , { data_test [1 ][:3 ]} , b={ int (data_test [1 ][3 ])} "
146
146
pbar .set_description_str (f"[{ grad_str } ], { n_jobs } jobs" )
147
147
148
148
if not single_model : # A true LOGO estimator
149
- if hasattr (dwdata , "gradients" ):
149
+ if hasattr (data , "gradients" ):
150
150
kwargs ["gtab" ] = data_train [1 ]
151
151
# Factory creates the appropriate model and pipes arguments
152
152
dwmodel = ModelFactory .init (
@@ -166,7 +166,7 @@ def estimate(
166
166
167
167
# prepare data for running ANTs
168
168
fixed , moving = _prepare_registration_data (
169
- data_test [0 ], predicted , dwdata .affine , i , ptmp_dir , reg_target_type
169
+ data_test [0 ], predicted , data .affine , i , ptmp_dir , reg_target_type
170
170
)
171
171
172
172
pbar .set_description_str (
@@ -177,11 +177,11 @@ def estimate(
177
177
fixed ,
178
178
moving ,
179
179
bmask_img ,
180
- dwdata .em_affines ,
181
- dwdata .affine ,
182
- dwdata .dataobj .shape [:3 ],
180
+ data .em_affines ,
181
+ data .affine ,
182
+ data .dataobj .shape [:3 ],
183
183
data_test [1 ][3 ],
184
- dwdata .fieldmap ,
184
+ data .fieldmap ,
185
185
i_iter ,
186
186
i ,
187
187
ptmp_dir ,
@@ -190,10 +190,10 @@ def estimate(
190
190
)
191
191
192
192
# update
193
- dwdata .set_transform (i , xform .matrix )
193
+ data .set_transform (i , xform .matrix )
194
194
pbar .update ()
195
195
196
- return dwdata .em_affines
196
+ return data .em_affines
197
197
198
198
199
199
def _prepare_brainmask_data (brainmask , affine ):
@@ -219,7 +219,7 @@ def _prepare_brainmask_data(brainmask, affine):
219
219
return bmask_img
220
220
221
221
222
- def _prepare_kwargs (dwdata , kwargs ):
222
+ def _prepare_kwargs (data , kwargs ):
223
223
"""Prepare the keyword arguments depending on the DWI data: add attributes corresponding to
224
224
the ``brainmask``, ``bzero``, ``gradients``, ``frame_time``, and ``total_duration`` DWI data
225
225
properties.
@@ -228,24 +228,24 @@ def _prepare_kwargs(dwdata, kwargs):
228
228
229
229
Parameters
230
230
----------
231
- dwdata : :class:`eddymotion.data.dmri.DWI`
231
+ data : :class:`eddymotion.data.dmri.DWI`
232
232
DWI data object.
233
233
kwargs : :obj:`dict`
234
234
Keyword arguments.
235
235
"""
236
236
from eddymotion .data .filtering import advanced_clip as _advanced_clip
237
237
238
- if dwdata .brainmask is not None :
239
- kwargs ["mask" ] = dwdata .brainmask
238
+ if data .brainmask is not None :
239
+ kwargs ["mask" ] = data .brainmask
240
240
241
- if hasattr (dwdata , "bzero" ) and dwdata .bzero is not None :
242
- kwargs ["S0" ] = _advanced_clip (dwdata .bzero )
241
+ if hasattr (data , "bzero" ) and data .bzero is not None :
242
+ kwargs ["S0" ] = _advanced_clip (data .bzero )
243
243
244
- if hasattr (dwdata , "gradients" ):
245
- kwargs ["gtab" ] = dwdata .gradients
244
+ if hasattr (data , "gradients" ):
245
+ kwargs ["gtab" ] = data .gradients
246
246
247
- if hasattr (dwdata , "frame_time" ):
248
- kwargs ["timepoints" ] = dwdata .frame_time
247
+ if hasattr (data , "frame_time" ):
248
+ kwargs ["timepoints" ] = data .frame_time
249
249
250
- if hasattr (dwdata , "total_duration" ):
251
- kwargs ["xlim" ] = dwdata .total_duration
250
+ if hasattr (data , "total_duration" ):
251
+ kwargs ["xlim" ] = data .total_duration
0 commit comments